YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Effect of Reaction on Compressor Performance

    Source: Journal of Turbomachinery:;2022:;volume( 145 ):;issue: 002::page 21012-1
    Author:
    Chana, Krishan S.
    ,
    Miller, Robert J.
    DOI: 10.1115/1.4049914
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Reaction is the fundamental parameter by which the asymmetry of the velocity triangle of a stage is set. Little is understood about the effect that a reaction has on either the efficiency or the operating range of a compressor. A particular difficulty in understanding the effect of the reaction is that the rotor and stator have a natural asymmetry caused by the centrifugal effects in the rotor boundary layer being much larger than that in the stator boundary layer. In this paper, a novel approach has been taken: McKenzie’s “linear repeating stage” concept is used to remove the centrifugal effects. The centrifugal effects are then reintroduced as a body force. This allows the velocity triangle effect and centrifugal force effect to be decoupled. The paper shows the surprising result that, depending on how the solidity is set, a 50% reaction stage can either result in the maximum, or the minimum, profile loss. When the centrifugal effects are removed, 50% reaction is shown to minimize endwall loss, maximize stage efficiency, and maximize operating range. When the centrifugal effects are reintroduced, the compressor with the maximum design efficiency is found to rise in the reaction by 5% (from 50% reaction to 55% reaction) and the compressor with the maximum operating range is found to rise in the reaction by 15% (from 50% reaction to 65% reaction).
    • Download: (1.460Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Effect of Reaction on Compressor Performance

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4291507
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorChana, Krishan S.
    contributor authorMiller, Robert J.
    date accessioned2023-08-16T18:08:59Z
    date available2023-08-16T18:08:59Z
    date copyright10/20/2022 12:00:00 AM
    date issued2022
    identifier issn0889-504X
    identifier otherturbo_145_2_021012.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4291507
    description abstractReaction is the fundamental parameter by which the asymmetry of the velocity triangle of a stage is set. Little is understood about the effect that a reaction has on either the efficiency or the operating range of a compressor. A particular difficulty in understanding the effect of the reaction is that the rotor and stator have a natural asymmetry caused by the centrifugal effects in the rotor boundary layer being much larger than that in the stator boundary layer. In this paper, a novel approach has been taken: McKenzie’s “linear repeating stage” concept is used to remove the centrifugal effects. The centrifugal effects are then reintroduced as a body force. This allows the velocity triangle effect and centrifugal force effect to be decoupled. The paper shows the surprising result that, depending on how the solidity is set, a 50% reaction stage can either result in the maximum, or the minimum, profile loss. When the centrifugal effects are removed, 50% reaction is shown to minimize endwall loss, maximize stage efficiency, and maximize operating range. When the centrifugal effects are reintroduced, the compressor with the maximum design efficiency is found to rise in the reaction by 5% (from 50% reaction to 55% reaction) and the compressor with the maximum operating range is found to rise in the reaction by 15% (from 50% reaction to 65% reaction).
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Effect of Reaction on Compressor Performance
    typeJournal Paper
    journal volume145
    journal issue2
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4049914
    journal fristpage21012-1
    journal lastpage21012-12
    page12
    treeJournal of Turbomachinery:;2022:;volume( 145 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian