YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Data-Driven Tip Flow Loss Prediction Method for a Transonic Fan Under Boundary Layer Ingesting Inflow Distortion

    Source: Journal of Turbomachinery:;2022:;volume( 145 ):;issue: 001::page 11001-1
    Author:
    Yang, Zhe
    ,
    Lu, Hanan
    ,
    Pan, Tianyu
    ,
    Li, Qiushi
    DOI: 10.1115/1.4055439
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In a boundary layer ingesting (BLI) propulsion system, the fan blades need to operate continuously under large-scale inflow distortion. The distortion will lead to serious aerodynamic losses in the fan, degrading the fan performance and the overall aerodynamic benefits of the aircraft. Therefore, in the preliminary design of a BLI propulsion system, it is necessary to evaluate the influence of the fuselage boundary layer under different flight conditions on the fan aerodynamic performance. However, a gap exists in the current computational methods for BLI fan performance evaluations. The full-annulus unsteady Reynolds-averaged Navier–Stokes (URANS) simulations can provide reliable predictions but are computationally expensive for design iterations. The low-order computational methods are cost-efficient but rely on the loss models for accurate prediction. The conventional empirical or physics-based loss models show notable limitations under complex distortion-induced off-design working conditions in a BLI fan, especially in the rotor tip region, compromising the reliability of the low-order computational methods. To balance the accuracy and cost of loss prediction, the paper proposes a data-driven tip flow loss prediction framework for a BLI fan. It employs a neural network to build a surrogate model to predict the tip flow loss at complex non-uniform aerodynamic conditions. Physical understandings of the flow features in the BLI fan are integrated into the data-driven modeling process, to further reduce the computational cost and improve the method’s applicability. The data-driven prediction method shows good accuracy in predicting the overall values and radial distributions of fan rotor tip flow loss under various BLI inflow distortion conditions. Not only does it have higher accuracy than the conventional physics-based loss models but also needs much less computational time than the full-annulus time-accurate simulations. The present work has demonstrated a significant potential of data-driven approaches in complex aerodynamic loss modeling and will contribute to future BLI fan design.
    • Download: (2.020Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Data-Driven Tip Flow Loss Prediction Method for a Transonic Fan Under Boundary Layer Ingesting Inflow Distortion

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4291479
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorYang, Zhe
    contributor authorLu, Hanan
    contributor authorPan, Tianyu
    contributor authorLi, Qiushi
    date accessioned2023-08-16T18:08:07Z
    date available2023-08-16T18:08:07Z
    date copyright10/3/2022 12:00:00 AM
    date issued2022
    identifier issn0889-504X
    identifier otherturbo_145_1_011001.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4291479
    description abstractIn a boundary layer ingesting (BLI) propulsion system, the fan blades need to operate continuously under large-scale inflow distortion. The distortion will lead to serious aerodynamic losses in the fan, degrading the fan performance and the overall aerodynamic benefits of the aircraft. Therefore, in the preliminary design of a BLI propulsion system, it is necessary to evaluate the influence of the fuselage boundary layer under different flight conditions on the fan aerodynamic performance. However, a gap exists in the current computational methods for BLI fan performance evaluations. The full-annulus unsteady Reynolds-averaged Navier–Stokes (URANS) simulations can provide reliable predictions but are computationally expensive for design iterations. The low-order computational methods are cost-efficient but rely on the loss models for accurate prediction. The conventional empirical or physics-based loss models show notable limitations under complex distortion-induced off-design working conditions in a BLI fan, especially in the rotor tip region, compromising the reliability of the low-order computational methods. To balance the accuracy and cost of loss prediction, the paper proposes a data-driven tip flow loss prediction framework for a BLI fan. It employs a neural network to build a surrogate model to predict the tip flow loss at complex non-uniform aerodynamic conditions. Physical understandings of the flow features in the BLI fan are integrated into the data-driven modeling process, to further reduce the computational cost and improve the method’s applicability. The data-driven prediction method shows good accuracy in predicting the overall values and radial distributions of fan rotor tip flow loss under various BLI inflow distortion conditions. Not only does it have higher accuracy than the conventional physics-based loss models but also needs much less computational time than the full-annulus time-accurate simulations. The present work has demonstrated a significant potential of data-driven approaches in complex aerodynamic loss modeling and will contribute to future BLI fan design.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Data-Driven Tip Flow Loss Prediction Method for a Transonic Fan Under Boundary Layer Ingesting Inflow Distortion
    typeJournal Paper
    journal volume145
    journal issue1
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4055439
    journal fristpage11001-1
    journal lastpage11001-17
    page17
    treeJournal of Turbomachinery:;2022:;volume( 145 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian