YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Comparison of Squat Depth and Sex on Knee Kinematics and Muscle Activation

    Source: Journal of Biomechanical Engineering:;2023:;volume( 145 ):;issue: 007::page 71010-1
    Author:
    Barrett, Kiara B.
    ,
    Sievert, Zachary A.
    ,
    Bennett, Hunter J.
    DOI: 10.1115/1.4062330
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The squat is an essential exercise for strengthening lower body musculature. Although squats are frequently employed to improve lower extremity strength and neuromuscular control, differences between sexes and slight modifications, such as squat depth, can dramatically alter muscle recruitment and thus the foci of the exercise. The purpose of this study was to assess the effect of sex and squat depth on lower extremity coactivation and kinematics. Twenty recreationally active (female = 10) participants were recruited. The first visit consisted of one repetition maximum testing. For the second visit, muscle activation was recorded of the gluteus maximus (GM), semitendinosus, biceps femoris (BF), vastus medialis, vastus lateralis, rectus femoris, and gastrocnemius. Reflective markers were placed on the lower body for three-dimensional motion capture. Participants performed a series of squats to 90 deg knee flexion and 120 deg knee flexion. Benjamin–Hochberg procedure was employed and the alpha level was set at 0.05. Knee flexion (p < 0.001), adduction (p < 0.001), and external rotation (p = 0.008) were reduced during 90 deg compared to deep squats. Hip flexion, abduction, and external rotation were greater in deep squats (p < 0.001). Males had greater hip extensor to quad (HE:Q) cocontraction in 90 deg compared to deep squats (p = 0.007); females produced greater posterior chain activation in deep squats (p = 0.001) on ascent. When comparing sexes, males displayed greater HE:Q in the 90 deg squat during ascent (p = 0.013). The addition of deep squats into a preventative training program could be beneficial in reducing deficits prevalent in females and decrease injury incidence.
    • Download: (854.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Comparison of Squat Depth and Sex on Knee Kinematics and Muscle Activation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4291292
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorBarrett, Kiara B.
    contributor authorSievert, Zachary A.
    contributor authorBennett, Hunter J.
    date accessioned2023-08-16T18:02:49Z
    date available2023-08-16T18:02:49Z
    date copyright5/4/2023 12:00:00 AM
    date issued2023
    identifier issn0148-0731
    identifier otherbio_145_07_071010.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4291292
    description abstractThe squat is an essential exercise for strengthening lower body musculature. Although squats are frequently employed to improve lower extremity strength and neuromuscular control, differences between sexes and slight modifications, such as squat depth, can dramatically alter muscle recruitment and thus the foci of the exercise. The purpose of this study was to assess the effect of sex and squat depth on lower extremity coactivation and kinematics. Twenty recreationally active (female = 10) participants were recruited. The first visit consisted of one repetition maximum testing. For the second visit, muscle activation was recorded of the gluteus maximus (GM), semitendinosus, biceps femoris (BF), vastus medialis, vastus lateralis, rectus femoris, and gastrocnemius. Reflective markers were placed on the lower body for three-dimensional motion capture. Participants performed a series of squats to 90 deg knee flexion and 120 deg knee flexion. Benjamin–Hochberg procedure was employed and the alpha level was set at 0.05. Knee flexion (p < 0.001), adduction (p < 0.001), and external rotation (p = 0.008) were reduced during 90 deg compared to deep squats. Hip flexion, abduction, and external rotation were greater in deep squats (p < 0.001). Males had greater hip extensor to quad (HE:Q) cocontraction in 90 deg compared to deep squats (p = 0.007); females produced greater posterior chain activation in deep squats (p = 0.001) on ascent. When comparing sexes, males displayed greater HE:Q in the 90 deg squat during ascent (p = 0.013). The addition of deep squats into a preventative training program could be beneficial in reducing deficits prevalent in females and decrease injury incidence.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Comparison of Squat Depth and Sex on Knee Kinematics and Muscle Activation
    typeJournal Paper
    journal volume145
    journal issue7
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4062330
    journal fristpage71010-1
    journal lastpage71010-7
    page7
    treeJournal of Biomechanical Engineering:;2023:;volume( 145 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian