YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Centimeter-Wavelength Snowfall Retrieval Algorithm Using Machine Learning

    Source: Journal of Applied Meteorology and Climatology:;2022:;volume( 061 ):;issue: 008::page 1029
    Author:
    Fraser King
    ,
    George Duffy
    ,
    Christopher G. Fletcher
    DOI: 10.1175/JAMC-D-22-0036.1
    Publisher: American Meteorological Society
    Abstract: Remote sensing snowfall retrievals are powerful tools for advancing our understanding of global snow accumulation patterns. However, current satellite-based snowfall retrievals rely on assumptions about snowfall particle shape, size, and distribution that contribute to uncertainty and biases in their estimates. Vertical radar reflectivity profiles provided by the vertically pointing X-band radar (VertiX) instrument in Egbert, Ontario, Canada, are compared with in situ surface snow accumulation measurements from January to March 2012 as a part of the Global Precipitation Measurement (GPM) Cold Season Precipitation Experiment (GCPEx). In this work, we train a random forest (RF) machine learning model on VertiX radar profiles and ERA5 atmospheric temperature estimates to derive a surface snow accumulation regression model. Using event-based training–testing sets, the RF model demonstrates high predictive skill in estimating surface snow accumulation at 5-min intervals with a low mean-square error of approximately 1.8 × 10
    • Download: (1.922Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Centimeter-Wavelength Snowfall Retrieval Algorithm Using Machine Learning

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4290160
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorFraser King
    contributor authorGeorge Duffy
    contributor authorChristopher G. Fletcher
    date accessioned2023-04-12T18:44:25Z
    date available2023-04-12T18:44:25Z
    date copyright2022/08/01
    date issued2022
    identifier otherJAMC-D-22-0036.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4290160
    description abstractRemote sensing snowfall retrievals are powerful tools for advancing our understanding of global snow accumulation patterns. However, current satellite-based snowfall retrievals rely on assumptions about snowfall particle shape, size, and distribution that contribute to uncertainty and biases in their estimates. Vertical radar reflectivity profiles provided by the vertically pointing X-band radar (VertiX) instrument in Egbert, Ontario, Canada, are compared with in situ surface snow accumulation measurements from January to March 2012 as a part of the Global Precipitation Measurement (GPM) Cold Season Precipitation Experiment (GCPEx). In this work, we train a random forest (RF) machine learning model on VertiX radar profiles and ERA5 atmospheric temperature estimates to derive a surface snow accumulation regression model. Using event-based training–testing sets, the RF model demonstrates high predictive skill in estimating surface snow accumulation at 5-min intervals with a low mean-square error of approximately 1.8 × 10
    publisherAmerican Meteorological Society
    titleA Centimeter-Wavelength Snowfall Retrieval Algorithm Using Machine Learning
    typeJournal Paper
    journal volume61
    journal issue8
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/JAMC-D-22-0036.1
    journal fristpage1029
    journal lastpage1039
    page1029–1039
    treeJournal of Applied Meteorology and Climatology:;2022:;volume( 061 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian