YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Design for Measuring Operational Performance of Truck Parking Terminal Using Simulation Technique

    Source: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2022:;Volume ( 008 ):;issue: 004::page 05022002
    Author:
    Narayana Raju
    ,
    Shriniwas Arkatkar
    ,
    Said Easa
    ,
    Gaurang Joshi
    DOI: 10.1061/AJRUA6.0001275
    Publisher: ASCE
    Abstract: The paper presents the performance analysis of a well-designed truck parking terminal, which is planned for regulating truck traffic over a commercial port. The designed truck parking terminal is modeled using microscopic traffic simulation, which is validated based on the movement of vehicles to the parking bays. After validation, various scenarios were created to evaluate parking terminal performance by varying the parking volumes and number of operational parking bays. The operational efficiency of the parking terminal for design scenarios was evaluated using parking performance measures that included parking load, average parking duration, parking turnover, and load-to-capacity ratio (parking index). For the design peak load of 4,200  vehicles/day with a uniform arrival rate, the operational efficiency was found to be about 73%. Interestingly, it was observed that with an increase in the number of operational parking bays, the parking efficiency decreased for the given volume level. Considering this phenomenon, a methodology was developed to identify the optimum number of parking bays under varying demand-supply scenarios. The developed methodology can help identify the optimum number of parking bays for existing and future (expansion) conditions. Furthermore, this study highlights the importance of using simulation in evaluating operational and design aspects of transportation facilities, where the need for repeated empirical observations is eliminated. As such, this study should be of interest to traffic engineers and practitioners interested in the efficient operation of parking terminals.
    • Download: (1.792Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Design for Measuring Operational Performance of Truck Parking Terminal Using Simulation Technique

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4289453
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering

    Show full item record

    contributor authorNarayana Raju
    contributor authorShriniwas Arkatkar
    contributor authorSaid Easa
    contributor authorGaurang Joshi
    date accessioned2023-04-07T00:38:30Z
    date available2023-04-07T00:38:30Z
    date issued2022/12/01
    identifier otherAJRUA6.0001275.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4289453
    description abstractThe paper presents the performance analysis of a well-designed truck parking terminal, which is planned for regulating truck traffic over a commercial port. The designed truck parking terminal is modeled using microscopic traffic simulation, which is validated based on the movement of vehicles to the parking bays. After validation, various scenarios were created to evaluate parking terminal performance by varying the parking volumes and number of operational parking bays. The operational efficiency of the parking terminal for design scenarios was evaluated using parking performance measures that included parking load, average parking duration, parking turnover, and load-to-capacity ratio (parking index). For the design peak load of 4,200  vehicles/day with a uniform arrival rate, the operational efficiency was found to be about 73%. Interestingly, it was observed that with an increase in the number of operational parking bays, the parking efficiency decreased for the given volume level. Considering this phenomenon, a methodology was developed to identify the optimum number of parking bays under varying demand-supply scenarios. The developed methodology can help identify the optimum number of parking bays for existing and future (expansion) conditions. Furthermore, this study highlights the importance of using simulation in evaluating operational and design aspects of transportation facilities, where the need for repeated empirical observations is eliminated. As such, this study should be of interest to traffic engineers and practitioners interested in the efficient operation of parking terminals.
    publisherASCE
    titleExperimental Design for Measuring Operational Performance of Truck Parking Terminal Using Simulation Technique
    typeJournal Article
    journal volume8
    journal issue4
    journal titleASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    identifier doi10.1061/AJRUA6.0001275
    journal fristpage05022002
    journal lastpage05022002_9
    page9
    treeASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2022:;Volume ( 008 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian