YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Generalized Water Retention Model for Geosynthetic Clay Liners

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2022:;Volume ( 148 ):;issue: 012::page 04022116
    Author:
    Zhi Chong Lau
    ,
    Abdelmalek Bouazza
    ,
    Ning Lu
    ,
    Will P. Gates
    DOI: 10.1061/(ASCE)GT.1943-5606.0002933
    Publisher: ASCE
    Abstract: The composite nature of geosynthetic clay liners and the contrasting water retention behavior of its bentonite and geotextile components has presented a unique challenge that current water retention models do not fully address. This paper proposes a new water retention model that can accurately describe the bimodal behavior of geosynthetic clay liners across the entire suction range (10−2–106  kPa) on the adsorption path. The model was formulated based on the pore structures and dominant suction regimes present in geosynthetic clay liners. In addition to the soil adsorptive and capillary water, it incorporates the geotextile capillary regime, which encompasses the pore water fraction in the geotextile, bentonite extrusion into the geotextile, and additionally, any volume changes due to bentonite swelling (including polymer effects). The parameters defined in this conceptual model describe the physical characteristics of bentonite and the geotextile fraction in the geosynthetic clay liner (GCL). The proposed model’s performance was assessed and validated using extensive experimental water retention data sets. The statistical analysis indicated that the proposed model provides a better fit than other models, especially in the low-suction range, and is adept at predicting the water retention behavior of the geosynthetic clay liners on the wetting path.
    • Download: (3.825Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Generalized Water Retention Model for Geosynthetic Clay Liners

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4289207
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorZhi Chong Lau
    contributor authorAbdelmalek Bouazza
    contributor authorNing Lu
    contributor authorWill P. Gates
    date accessioned2023-04-07T00:31:30Z
    date available2023-04-07T00:31:30Z
    date issued2022/12/01
    identifier other%28ASCE%29GT.1943-5606.0002933.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4289207
    description abstractThe composite nature of geosynthetic clay liners and the contrasting water retention behavior of its bentonite and geotextile components has presented a unique challenge that current water retention models do not fully address. This paper proposes a new water retention model that can accurately describe the bimodal behavior of geosynthetic clay liners across the entire suction range (10−2–106  kPa) on the adsorption path. The model was formulated based on the pore structures and dominant suction regimes present in geosynthetic clay liners. In addition to the soil adsorptive and capillary water, it incorporates the geotextile capillary regime, which encompasses the pore water fraction in the geotextile, bentonite extrusion into the geotextile, and additionally, any volume changes due to bentonite swelling (including polymer effects). The parameters defined in this conceptual model describe the physical characteristics of bentonite and the geotextile fraction in the geosynthetic clay liner (GCL). The proposed model’s performance was assessed and validated using extensive experimental water retention data sets. The statistical analysis indicated that the proposed model provides a better fit than other models, especially in the low-suction range, and is adept at predicting the water retention behavior of the geosynthetic clay liners on the wetting path.
    publisherASCE
    titleA Generalized Water Retention Model for Geosynthetic Clay Liners
    typeJournal Article
    journal volume148
    journal issue12
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0002933
    journal fristpage04022116
    journal lastpage04022116_16
    page16
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2022:;Volume ( 148 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian