YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Finite-Element Investigation of Excavation-Induced Settlements of Buildings and Buried Pipelines

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2022:;Volume ( 148 ):;issue: 010::page 04022072
    Author:
    Y. P. Dong
    ,
    H. J. Burd
    ,
    G. T. Houlsby
    DOI: 10.1061/(ASCE)GT.1943-5606.0002874
    Publisher: ASCE
    Abstract: Excavation-induced ground movements can have a detrimental influence on adjacent structures and services. These complex soil–structure interactions are affected by a range of factors such as ground conditions, excavation sequence, and the characteristics of the structures. Considerable prior research has been concerned with understanding the ground response during excavation and in evaluating the potential damage to adjacent facilities. A number of case histories have been reported worldwide. Finite-element analysis can be effective in providing insight into the response of the ground and adjacent structures during the entire construction process. Previous studies have shown that observed excavation behavior (e.g., ground movements and retaining wall deformations) can be captured reasonably well in finite-element analysis, provided that certain key modeling aspects are appropriately addressed. This paper extends a previous deep excavation case study in greenfield conditions (i.e., without adjacent buildings and utilities included in the analysis), focusing particularly on the excavation-induced settlements of nearby buildings and buried pipelines. Sensitivity analyses have been conducted to investigate the effects of several aspects on the computed settlements of buildings and pipelines, such as (1) building weight, (2) building stiffness, (3) building foundation type, (4) ground improvement measures, and (5) geometries and material properties of pipelines. Conclusions are drawn for future applications.
    • Download: (9.009Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Finite-Element Investigation of Excavation-Induced Settlements of Buildings and Buried Pipelines

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4289171
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorY. P. Dong
    contributor authorH. J. Burd
    contributor authorG. T. Houlsby
    date accessioned2023-04-07T00:30:31Z
    date available2023-04-07T00:30:31Z
    date issued2022/10/01
    identifier other%28ASCE%29GT.1943-5606.0002874.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4289171
    description abstractExcavation-induced ground movements can have a detrimental influence on adjacent structures and services. These complex soil–structure interactions are affected by a range of factors such as ground conditions, excavation sequence, and the characteristics of the structures. Considerable prior research has been concerned with understanding the ground response during excavation and in evaluating the potential damage to adjacent facilities. A number of case histories have been reported worldwide. Finite-element analysis can be effective in providing insight into the response of the ground and adjacent structures during the entire construction process. Previous studies have shown that observed excavation behavior (e.g., ground movements and retaining wall deformations) can be captured reasonably well in finite-element analysis, provided that certain key modeling aspects are appropriately addressed. This paper extends a previous deep excavation case study in greenfield conditions (i.e., without adjacent buildings and utilities included in the analysis), focusing particularly on the excavation-induced settlements of nearby buildings and buried pipelines. Sensitivity analyses have been conducted to investigate the effects of several aspects on the computed settlements of buildings and pipelines, such as (1) building weight, (2) building stiffness, (3) building foundation type, (4) ground improvement measures, and (5) geometries and material properties of pipelines. Conclusions are drawn for future applications.
    publisherASCE
    titleFinite-Element Investigation of Excavation-Induced Settlements of Buildings and Buried Pipelines
    typeJournal Article
    journal volume148
    journal issue10
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0002874
    journal fristpage04022072
    journal lastpage04022072_16
    page16
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2022:;Volume ( 148 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian