YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Seismic Response of Inhomogeneous Soil Deposits with Exponentially Varying Stiffness

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2022:;Volume ( 148 ):;issue: 011::page 04022093
    Author:
    Emmanouil Rovithis
    ,
    George Mylonakis
    DOI: 10.1061/(ASCE)GT.1943-5606.0002850
    Publisher: ASCE
    Abstract: The response of an inhomogeneous soil layer with exponentially varying stiffness with depth is explored using one-dimensional viscoelastic wave propagation theory. The governing equation is treated analytically, leading to an exact harmonic solution of the Bessel type. Both positive and negative velocity gradients are examined using a pertinent dimensionless parameter. It is shown that (1) for positive stiffness gradients, strains attenuate with depth faster than displacements that, in turn, attenuate faster than stresses; and (2) close to the soil surface, curvatures are controlled by acceleration, whereas they are controlled by strain at depth. The fundamental natural frequency of the layer compares well against approximations on the basis of the Rayleigh quotient. Novel asymptotic and ad hoc approximate solutions for the base-to-surface transfer function are proposed, providing good alternatives to the complex exact solution at both high and low frequencies. New expressions are derived relating (1) shear strain and peak particle velocity; and (2) curvature and peak ground acceleration close to the soil surface. A full-domain approximation is provided, allowing the practical implementation of the specific velocity model. Numerical examples are presented.
    • Download: (2.666Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Seismic Response of Inhomogeneous Soil Deposits with Exponentially Varying Stiffness

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4289161
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorEmmanouil Rovithis
    contributor authorGeorge Mylonakis
    date accessioned2023-04-07T00:30:18Z
    date available2023-04-07T00:30:18Z
    date issued2022/11/01
    identifier other%28ASCE%29GT.1943-5606.0002850.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4289161
    description abstractThe response of an inhomogeneous soil layer with exponentially varying stiffness with depth is explored using one-dimensional viscoelastic wave propagation theory. The governing equation is treated analytically, leading to an exact harmonic solution of the Bessel type. Both positive and negative velocity gradients are examined using a pertinent dimensionless parameter. It is shown that (1) for positive stiffness gradients, strains attenuate with depth faster than displacements that, in turn, attenuate faster than stresses; and (2) close to the soil surface, curvatures are controlled by acceleration, whereas they are controlled by strain at depth. The fundamental natural frequency of the layer compares well against approximations on the basis of the Rayleigh quotient. Novel asymptotic and ad hoc approximate solutions for the base-to-surface transfer function are proposed, providing good alternatives to the complex exact solution at both high and low frequencies. New expressions are derived relating (1) shear strain and peak particle velocity; and (2) curvature and peak ground acceleration close to the soil surface. A full-domain approximation is provided, allowing the practical implementation of the specific velocity model. Numerical examples are presented.
    publisherASCE
    titleSeismic Response of Inhomogeneous Soil Deposits with Exponentially Varying Stiffness
    typeJournal Article
    journal volume148
    journal issue11
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0002850
    journal fristpage04022093
    journal lastpage04022093_16
    page16
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2022:;Volume ( 148 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian