contributor author | Roy, Arnab;Searle, Matthew;Ramesh, Sridharan;Straub, Douglas | |
date accessioned | 2023-04-06T12:48:52Z | |
date available | 2023-04-06T12:48:52Z | |
date copyright | 9/23/2022 12:00:00 AM | |
date issued | 2022 | |
identifier issn | 7424795 | |
identifier other | gtp_144_11_111019.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4288555 | |
description abstract | In this paper, an experimental and numerical investigation of internal cooling channels with rib turbulators is presented with sCO2 as the working fluid at process conditions (pressure20.7 MPa and temperature up to 150 °C). The effect of channel aspect ratio up to 2:1 on thermalhydraulic performance is explored in additively manufactured rectangular channels and square channels, both with and without 60 deg ribs on the top and bottom sides. The Wilsonplot method is employed to experimentally measure channelaveraged Nusselt number over a Reynolds number range up to 370,000. The friction factor is calculated from pressure drop and mass flow rate and additionally, the overall thermal performance factor (TPF) is reported. A companion computational fluid dynamics (CFD) simulation is performed for the rib turbulated cooling configurations reported in the experiments using the Reynolds average Navier–Stokesbased turbulence model. The objective of the numerical study is to gain insight into the local heat transfer augmentation in the ribbed channels as a result of varying the aspect ratio, channel configuration (square versus rectangular), operating conditions (Reynolds number) and the surface roughness, an inherent outcome of the additive manufacturing process. Surface roughness is simulated using sand grain roughness height (KS) calculated from the experimental data, and a comparison is presented with the corresponding channel configuration with varying surface roughness heights starting from smooth surfaces (KS = 0). Experimental results indicate that the heat transfer augmentation is negligible in the rectangular channels with ribs on the long side compared to the square channel. However, it is enhanced by 60% in comparison to placing ribs on the shorter side. The TPF remains constant at around 1 for the entire range of Reynolds numbers consistent with prior work at the National Energy Technology Laboratory (NETL). The simulation results highlight that increased surface roughness can have a favorable considerable influence on Nusselt number and overall thermal performance enhancement. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Investigation of Gas Turbine Internal Cooling Using Supercritical CO2—Effect of Surface Roughness and Channel Aspect Ratio | |
type | Journal Paper | |
journal volume | 144 | |
journal issue | 11 | |
journal title | Journal of Engineering for Gas Turbines and Power | |
identifier doi | 10.1115/1.4055497 | |
journal fristpage | 111019 | |
journal lastpage | 11101915 | |
page | 15 | |
tree | Journal of Engineering for Gas Turbines and Power:;2022:;volume( 144 ):;issue: 011 | |
contenttype | Fulltext | |