YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Sensitivity of Adiabatic Cooling Effectiveness to Mainstream and Coolant Temperatures in Transonic Flow Over an Idealized Blade Tip Model

    Source: Journal of Turbomachinery:;2022:;volume( 144 ):;issue: 011::page 111013
    Author:
    Ma, Haiteng;Zeng, Wei;Dai, Siming;Jiang, Hongmei
    DOI: 10.1115/1.4055268
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Film cooling, as a key technology to ensure turbine survival in new generation gas turbines, has been studied profusely in subsonic flows. But in transonic flow, the determination of adiabatic cooling effectiveness faces a dilemma in the state of the art. Specifically, derivation of reference temperature, or local recovery temperature, in adiabatic effectiveness is disputable. Some researchers designate it to be the adiabatic wall temperature for the uncooled model (linear regression method (LRM)), but others calculate it from an iterative procedure based on a pair of cooling tests (dual linear regression technique (DLRT)). As the first of the kind effort to explore this dilemma, this article carried out transient thermal measurements by infrared thermography, for transonic flow over an idealized blade tip model. Heat transfer experiments were conducted for the uncooled and cooled cases, at two mainstream temperatures of 340 K and 325 K and two coolant temperatures of 276 K and 287 K. Data from these six experimental groups were processed by LRM and DLRT, respectively, to obtain heat transfer coefficient and adiabatic effectiveness, whose sensitivity to mainstream and coolant temperatures is tested and compared. It is found that the heat transfer coefficient is basically insensitive to temperature boundary conditions and data reduction methods, as expected. However, for adiabatic effectiveness, LRM results are sensitive to the 11 K decrease of coolant temperature in areas confined to the upstream of cooling injection, and much less so to the 15 K rise in mainstream temperature. DLRT result, derived from the test pair with two coolant temperatures, reduces globally and conspicuously with 15 K increase in mainstream temperature. Furthermore, adiabatic effectiveness obtained by LRM is qualitatively different from that by DLRT, which is mainly attributed to the large discrepancy in reference temperature between the two methods.
    • Download: (1.482Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Sensitivity of Adiabatic Cooling Effectiveness to Mainstream and Coolant Temperatures in Transonic Flow Over an Idealized Blade Tip Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4288449
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorMa, Haiteng;Zeng, Wei;Dai, Siming;Jiang, Hongmei
    date accessioned2022-12-27T23:21:20Z
    date available2022-12-27T23:21:20Z
    date copyright9/13/2022 12:00:00 AM
    date issued2022
    identifier issn0889-504X
    identifier otherturbo_144_11_111013.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4288449
    description abstractFilm cooling, as a key technology to ensure turbine survival in new generation gas turbines, has been studied profusely in subsonic flows. But in transonic flow, the determination of adiabatic cooling effectiveness faces a dilemma in the state of the art. Specifically, derivation of reference temperature, or local recovery temperature, in adiabatic effectiveness is disputable. Some researchers designate it to be the adiabatic wall temperature for the uncooled model (linear regression method (LRM)), but others calculate it from an iterative procedure based on a pair of cooling tests (dual linear regression technique (DLRT)). As the first of the kind effort to explore this dilemma, this article carried out transient thermal measurements by infrared thermography, for transonic flow over an idealized blade tip model. Heat transfer experiments were conducted for the uncooled and cooled cases, at two mainstream temperatures of 340 K and 325 K and two coolant temperatures of 276 K and 287 K. Data from these six experimental groups were processed by LRM and DLRT, respectively, to obtain heat transfer coefficient and adiabatic effectiveness, whose sensitivity to mainstream and coolant temperatures is tested and compared. It is found that the heat transfer coefficient is basically insensitive to temperature boundary conditions and data reduction methods, as expected. However, for adiabatic effectiveness, LRM results are sensitive to the 11 K decrease of coolant temperature in areas confined to the upstream of cooling injection, and much less so to the 15 K rise in mainstream temperature. DLRT result, derived from the test pair with two coolant temperatures, reduces globally and conspicuously with 15 K increase in mainstream temperature. Furthermore, adiabatic effectiveness obtained by LRM is qualitatively different from that by DLRT, which is mainly attributed to the large discrepancy in reference temperature between the two methods.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSensitivity of Adiabatic Cooling Effectiveness to Mainstream and Coolant Temperatures in Transonic Flow Over an Idealized Blade Tip Model
    typeJournal Paper
    journal volume144
    journal issue11
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4055268
    journal fristpage111013
    journal lastpage111013_12
    page12
    treeJournal of Turbomachinery:;2022:;volume( 144 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian