YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Modeling and Design Challenges of Boundary Layer Ingesting Fans

    Source: Journal of Turbomachinery:;2022:;volume( 144 ):;issue: 011::page 111012
    Author:
    Sieradzki, Adam;Kwiatkowski, Tomasz;Turner, Mark G.;Łukasik, Borys
    DOI: 10.1115/1.4055265
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Studies show that boundary layer ingesting (BLI) propulsion can provide significant fuel burn reduction relative to pylon-mounted turbofan engines. However, this type of propulsion can lead to serious difficulties and engineering challenges. Numerical analyses of the fan with a uniform flow at the inlet and that exposed to the distorted flow were performed. These required the use of a full-annulus unsteady time-marching computational fluid dynamics (CFD) model, which was validated with experimental data obtained at a test rig. The first negative effect of the distorted inlet velocity profile is a variable incidence angle of the rotor. Both the calculations and the experiment show the nonuniform axial and tangential velocity profiles in front of the rotor. As a result, significant changes in the angle of attack of the blades and corresponding unsteady rotor loads are observed. The research was performed for different operating conditions to obtain performance curves and assess the BLI influence. This demonstrated the second problem arising from the operation of the fan with the distorted flow at the inlet, which is a reduction of the stall margin (48% reduction in the experiment). The whole stage was optimized for the axisymmetric flow to ensure a required value of stall margin and the highest possible efficiency at the design point. The experimental efficiency of the rig at the design point with the distorted inlet was 2.05% lower than the undistorted one. The CFD model shows a 1.25% reduction. Similar reductions were obtained for other operating points.
    • Download: (2.149Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Modeling and Design Challenges of Boundary Layer Ingesting Fans

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4288448
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorSieradzki, Adam;Kwiatkowski, Tomasz;Turner, Mark G.;Łukasik, Borys
    date accessioned2022-12-27T23:21:17Z
    date available2022-12-27T23:21:17Z
    date copyright9/13/2022 12:00:00 AM
    date issued2022
    identifier issn0889-504X
    identifier otherturbo_144_11_111012.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4288448
    description abstractStudies show that boundary layer ingesting (BLI) propulsion can provide significant fuel burn reduction relative to pylon-mounted turbofan engines. However, this type of propulsion can lead to serious difficulties and engineering challenges. Numerical analyses of the fan with a uniform flow at the inlet and that exposed to the distorted flow were performed. These required the use of a full-annulus unsteady time-marching computational fluid dynamics (CFD) model, which was validated with experimental data obtained at a test rig. The first negative effect of the distorted inlet velocity profile is a variable incidence angle of the rotor. Both the calculations and the experiment show the nonuniform axial and tangential velocity profiles in front of the rotor. As a result, significant changes in the angle of attack of the blades and corresponding unsteady rotor loads are observed. The research was performed for different operating conditions to obtain performance curves and assess the BLI influence. This demonstrated the second problem arising from the operation of the fan with the distorted flow at the inlet, which is a reduction of the stall margin (48% reduction in the experiment). The whole stage was optimized for the axisymmetric flow to ensure a required value of stall margin and the highest possible efficiency at the design point. The experimental efficiency of the rig at the design point with the distorted inlet was 2.05% lower than the undistorted one. The CFD model shows a 1.25% reduction. Similar reductions were obtained for other operating points.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNumerical Modeling and Design Challenges of Boundary Layer Ingesting Fans
    typeJournal Paper
    journal volume144
    journal issue11
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4055265
    journal fristpage111012
    journal lastpage111012_14
    page14
    treeJournal of Turbomachinery:;2022:;volume( 144 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian