YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Computational Fluid Dynamics Analysis of the Influence of Gas Content on the Rotordynamic Force Coefficients for a Circumferentially Grooved Annular Seal for Multiple Phase Pumps

    Source: Journal of Tribology:;2022:;volume( 144 ):;issue: 011::page 111803
    Author:
    Wu, Tingcheng;Andrés, Luis San;Lu, Xueliang
    DOI: 10.1115/1.4054757
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Pumping efficiency and rotordynamic stability are paramount to subsea multiphase pump operation since, during the life of a well, the process fluid transitions from a pure liquid to a mixture of gas in the liquid to just gas. Circumferentially grooved seals commonly serve as balance pistons in pumps while also restricting secondary flow. Prior experimental results obtained with a grooved seal operating with a mixture of air and mineral oil show the seal rotordynamic force coefficients vary significantly with the gas volume fraction (GVF). This paper, complementing an exhaustive experimental program, presents a computational fluid dynamics (CFD) analysis to predict the leakage and dynamic force coefficients of a circumferentially grooved seal supplied with air in an oil mixture with a GVF varying from 0 to 0.7. The test seal has 14 grooves, an overall axial length of 43.6 mm, and radial clearance of 0.211 mm. The 127 mm diameter rotor spins at constant angular speed (Ω = 3500 rpm). The mixture enters the seal at a supply pressure (Pin) of 2.9 bar(a), and the seal exit pressure (Pout) is 1 bar(a). The CFD two-phase flow simulations utilize the Euler–Euler multiphase model to predict the mass flowrate and the pressure field as a function of the operating conditions. Using a multi-frequency shaft orbit motion method, the CFD simulations deliver the variations of reaction force on the rotor with respect to the excitation frequency. For a pure liquid condition (GVF = 0), both the CFD and experimental results produce constant stiffness, damping, and added mass coefficients. The experimental and CFD results demonstrate the seal rotordynamic force coefficients are quite sensitive to the GVF. When introducing a small amount of air into the oil (GVF = 0.1), the direct damping coefficient increases by approximately 10%. For operation with a mixture with inlet GVF > 0.1, the cross-coupled stiffness coefficients develop strong frequency-dependent characteristics. In contrast, the direct damping coefficient has a negligible variation with excitation frequency. The CFD predictions, as well as the experimental results, evidence that air injection in a liquid stream can significantly change the seal rotordynamic characteristics, and thus can affect the rotordynamic stability of a pump. An accurate CFD analysis provides engineers to design reliable grooved seals operating under two-phase flow conditions.
    • Download: (1.151Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Computational Fluid Dynamics Analysis of the Influence of Gas Content on the Rotordynamic Force Coefficients for a Circumferentially Grooved Annular Seal for Multiple Phase Pumps

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4288413
    Collections
    • Journal of Tribology

    Show full item record

    contributor authorWu, Tingcheng;Andrés, Luis San;Lu, Xueliang
    date accessioned2022-12-27T23:20:21Z
    date available2022-12-27T23:20:21Z
    date copyright6/23/2022 12:00:00 AM
    date issued2022
    identifier issn0742-4787
    identifier othertrib_144_11_111803.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4288413
    description abstractPumping efficiency and rotordynamic stability are paramount to subsea multiphase pump operation since, during the life of a well, the process fluid transitions from a pure liquid to a mixture of gas in the liquid to just gas. Circumferentially grooved seals commonly serve as balance pistons in pumps while also restricting secondary flow. Prior experimental results obtained with a grooved seal operating with a mixture of air and mineral oil show the seal rotordynamic force coefficients vary significantly with the gas volume fraction (GVF). This paper, complementing an exhaustive experimental program, presents a computational fluid dynamics (CFD) analysis to predict the leakage and dynamic force coefficients of a circumferentially grooved seal supplied with air in an oil mixture with a GVF varying from 0 to 0.7. The test seal has 14 grooves, an overall axial length of 43.6 mm, and radial clearance of 0.211 mm. The 127 mm diameter rotor spins at constant angular speed (Ω = 3500 rpm). The mixture enters the seal at a supply pressure (Pin) of 2.9 bar(a), and the seal exit pressure (Pout) is 1 bar(a). The CFD two-phase flow simulations utilize the Euler–Euler multiphase model to predict the mass flowrate and the pressure field as a function of the operating conditions. Using a multi-frequency shaft orbit motion method, the CFD simulations deliver the variations of reaction force on the rotor with respect to the excitation frequency. For a pure liquid condition (GVF = 0), both the CFD and experimental results produce constant stiffness, damping, and added mass coefficients. The experimental and CFD results demonstrate the seal rotordynamic force coefficients are quite sensitive to the GVF. When introducing a small amount of air into the oil (GVF = 0.1), the direct damping coefficient increases by approximately 10%. For operation with a mixture with inlet GVF > 0.1, the cross-coupled stiffness coefficients develop strong frequency-dependent characteristics. In contrast, the direct damping coefficient has a negligible variation with excitation frequency. The CFD predictions, as well as the experimental results, evidence that air injection in a liquid stream can significantly change the seal rotordynamic characteristics, and thus can affect the rotordynamic stability of a pump. An accurate CFD analysis provides engineers to design reliable grooved seals operating under two-phase flow conditions.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleComputational Fluid Dynamics Analysis of the Influence of Gas Content on the Rotordynamic Force Coefficients for a Circumferentially Grooved Annular Seal for Multiple Phase Pumps
    typeJournal Paper
    journal volume144
    journal issue11
    journal titleJournal of Tribology
    identifier doi10.1115/1.4054757
    journal fristpage111803
    journal lastpage111803_9
    page9
    treeJournal of Tribology:;2022:;volume( 144 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian