YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Transient Analysis of Passive Autocatalytic Hydrogen Recombiners Using Computational Fluid Dynamics

    Source: Journal of Nuclear Engineering and Radiation Science:;2022:;volume( 009 ):;issue: 001::page 12001
    Author:
    Khan, Ahsan;Nawaz, Rab;Shah, Ajmal;Qureshi, Kamran Rasheed
    DOI: 10.1115/1.4054117
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Passive autocatalytic recombiners (PARs) are being used in most modern nuclear power plants (NPPs) for mitigating the hydrogen risk both in normal and accidental scenarios. Development of a systematic model of PARs based on computational fluid dynamics (CFD) is the subject of this paper. 2D simulations of AREVA (a nuclear technology company) recombiner have been performed to validate PARs data and then the developed methodology has been applied to a Chashma NPP-II (C-2) recombiners to assess their performance. Two cases have been discussed; one with constant velocity at inlet and other one is devoted to the startup response of the PAR. Within the recombiner, the hydrogen and oxygen recombine on catalytic plates surface by an exothermic reaction to produce steam. Reaction heat is dissipated among the plates, surroundings and air inside the PAR. Flow inside the PAR will continue downwards until the gas absorbs enough heat to become lighter in weight than the gas outside the PAR. In addition, hydrogen accumulation in containment dome of a C-2 has been modeled and the results have been compared with methods for estimation of leakages and consequences of releases (melcor) code results. Without PARs, hydrogen got buildup within the containment dome, but when PARs are activated, hydrogen concentration first started to rise until the recombination reaction activated at about ∼2% hydrogen concentration. The comparison shows that the results obtained by the model agree well with the melcor results.
    • Download: (2.770Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Transient Analysis of Passive Autocatalytic Hydrogen Recombiners Using Computational Fluid Dynamics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4288369
    Collections
    • Journal of Nuclear Engineering and Radiation Science

    Show full item record

    contributor authorKhan, Ahsan;Nawaz, Rab;Shah, Ajmal;Qureshi, Kamran Rasheed
    date accessioned2022-12-27T23:19:10Z
    date available2022-12-27T23:19:10Z
    date copyright6/7/2022 12:00:00 AM
    date issued2022
    identifier issn2332-8983
    identifier otherners_009_01_012001.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4288369
    description abstractPassive autocatalytic recombiners (PARs) are being used in most modern nuclear power plants (NPPs) for mitigating the hydrogen risk both in normal and accidental scenarios. Development of a systematic model of PARs based on computational fluid dynamics (CFD) is the subject of this paper. 2D simulations of AREVA (a nuclear technology company) recombiner have been performed to validate PARs data and then the developed methodology has been applied to a Chashma NPP-II (C-2) recombiners to assess their performance. Two cases have been discussed; one with constant velocity at inlet and other one is devoted to the startup response of the PAR. Within the recombiner, the hydrogen and oxygen recombine on catalytic plates surface by an exothermic reaction to produce steam. Reaction heat is dissipated among the plates, surroundings and air inside the PAR. Flow inside the PAR will continue downwards until the gas absorbs enough heat to become lighter in weight than the gas outside the PAR. In addition, hydrogen accumulation in containment dome of a C-2 has been modeled and the results have been compared with methods for estimation of leakages and consequences of releases (melcor) code results. Without PARs, hydrogen got buildup within the containment dome, but when PARs are activated, hydrogen concentration first started to rise until the recombination reaction activated at about ∼2% hydrogen concentration. The comparison shows that the results obtained by the model agree well with the melcor results.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleTransient Analysis of Passive Autocatalytic Hydrogen Recombiners Using Computational Fluid Dynamics
    typeJournal Paper
    journal volume9
    journal issue1
    journal titleJournal of Nuclear Engineering and Radiation Science
    identifier doi10.1115/1.4054117
    journal fristpage12001
    journal lastpage12001_9
    page9
    treeJournal of Nuclear Engineering and Radiation Science:;2022:;volume( 009 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian