YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Assessment of Spray and Pool Scrubbing Efficiencies for Means of Mitigation Against Aerosol Dispersion in the Context of Fuel Debris Retrieval at Fukushima Daiichi: Part II

    Source: Journal of Nuclear Engineering and Radiation Science:;2022:;volume( 008 ):;issue: 003::page 31702
    Author:
    Porcheron, Emmanuel;Leblois, Yohan;Gelain, Thomas;Chagnot, Christophe;Journeau, Christophe;Roulet, Damien
    DOI: 10.1115/1.4051538
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The general context of this paper is an evaluation of strategies that can be used to mitigate aerosol dispersion during fuel debris or corium retrieval in damaged Fukushima Daiichi reactors. Knowledge of the aerosol source terms released during fuel debris retrieval operations is one of the key factors for assessing aerosol dispersion leading to the potential dissemination of radionuclides into the environment. Our approach is to couple experimental results from integral tests obtained during laser cutting experiments, well-controlled analytical tests with separated effects performed in a dedicated facility to reproduce two-phase flow such as flows representative of pool scrubbing and spray scrubbing conditions, and numerical simulations. Integral tests provide relevant information on the airborne particle release fraction during laser cutting for underwater conditions at different water depths, such as the particle concentration and particle size distribution. However, the detailed characterization of two-phase flows, such as the size and velocity of gas bubble and water droplets generated by spray systems, is not possible during laser cutting integral tests. Therefore, a more analytical approach is necessary to obtain detailed information on two-phase flow, composed of bubbles in water, inducing pool scrubbing phenomenon, and droplets in gas generated by spray scrubbing systems used for mitigating dust dispersion, which are essential to the physical mechanisms of both processes and enable their respective efficiencies to be evaluated. The main objectives of this work were to develop models and ensure their validation based on experimental approach for predicting the pool scrubbing and spray scrubbing efficiencies in the context of fuel debris removal at Fukushima Daiichi.
    • Download: (2.197Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Assessment of Spray and Pool Scrubbing Efficiencies for Means of Mitigation Against Aerosol Dispersion in the Context of Fuel Debris Retrieval at Fukushima Daiichi: Part II

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4288352
    Collections
    • Journal of Nuclear Engineering and Radiation Science

    Show full item record

    contributor authorPorcheron, Emmanuel;Leblois, Yohan;Gelain, Thomas;Chagnot, Christophe;Journeau, Christophe;Roulet, Damien
    date accessioned2022-12-27T23:18:42Z
    date available2022-12-27T23:18:42Z
    date copyright5/26/2022 12:00:00 AM
    date issued2022
    identifier issn2332-8983
    identifier otherners_008_03_031702.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4288352
    description abstractThe general context of this paper is an evaluation of strategies that can be used to mitigate aerosol dispersion during fuel debris or corium retrieval in damaged Fukushima Daiichi reactors. Knowledge of the aerosol source terms released during fuel debris retrieval operations is one of the key factors for assessing aerosol dispersion leading to the potential dissemination of radionuclides into the environment. Our approach is to couple experimental results from integral tests obtained during laser cutting experiments, well-controlled analytical tests with separated effects performed in a dedicated facility to reproduce two-phase flow such as flows representative of pool scrubbing and spray scrubbing conditions, and numerical simulations. Integral tests provide relevant information on the airborne particle release fraction during laser cutting for underwater conditions at different water depths, such as the particle concentration and particle size distribution. However, the detailed characterization of two-phase flows, such as the size and velocity of gas bubble and water droplets generated by spray systems, is not possible during laser cutting integral tests. Therefore, a more analytical approach is necessary to obtain detailed information on two-phase flow, composed of bubbles in water, inducing pool scrubbing phenomenon, and droplets in gas generated by spray scrubbing systems used for mitigating dust dispersion, which are essential to the physical mechanisms of both processes and enable their respective efficiencies to be evaluated. The main objectives of this work were to develop models and ensure their validation based on experimental approach for predicting the pool scrubbing and spray scrubbing efficiencies in the context of fuel debris removal at Fukushima Daiichi.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAssessment of Spray and Pool Scrubbing Efficiencies for Means of Mitigation Against Aerosol Dispersion in the Context of Fuel Debris Retrieval at Fukushima Daiichi: Part II
    typeJournal Paper
    journal volume8
    journal issue3
    journal titleJournal of Nuclear Engineering and Radiation Science
    identifier doi10.1115/1.4051538
    journal fristpage31702
    journal lastpage31702_8
    page8
    treeJournal of Nuclear Engineering and Radiation Science:;2022:;volume( 008 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian