YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Adaptive Two-Stage Kriging-Based Infilling Strategy for Efficient Multi-Objective Global Optimization

    Source: Journal of Mechanical Design:;2022:;volume( 144 ):;issue: 011::page 111706
    Author:
    Liu, Yin;Wang, Shuo;Li, Kunpeng;Sun, Wei;Song, Xueguan
    DOI: 10.1115/1.4055122
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Most practical multi-objective optimization problems are often characterized by two or more expensive and conflicting objectives, which require time-consuming simulations. Commonly used algorithms construct a surrogate model of each objective function from a few high-fidelity solutions. In order to further decrease the computational burden, adaptive infilling strategies for multi-objective problems are developed to guide the next infilling design for expensive evaluation and update the surrogate model as well as the Pareto front in an iterative manner. In this paper, a multi-objective infilling strategy integrating the Kriging model with a two-stage infilling framework is proposed, termed as ATKIS. This method allows exploitation and exploration alternately to pinpoint the infilling solution for improving the Pareto set and avoiding local over-exploitation simultaneously. At the local exploitation stage, Kriging-based prediction and uncertainty estimation are combined with Non-dominant Ranking and Minimum Relative Distance theories for determining a new design solution, which has maximum improvement relative to the current Pareto set. At the global exploration stage, Voronoi tessellation theory is employed to search for the sparsest position in the design space for a new evaluation. The proposed method is compared with five recent infilling strategies to investigate the performance of infilling ability using several numerical benchmarks. The experimental results show that the proposed method outperforms the other three strategies in improving both effectiveness and robustness using the improvement of hypervolume as the evaluating indicator. In addition, a lightweight optimization design of hoist sheaves shows that the proposed method can deal with real engineering problems, while significantly reducing the computational time and the number of expensive simulations of samples.
    • Download: (2.730Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Adaptive Two-Stage Kriging-Based Infilling Strategy for Efficient Multi-Objective Global Optimization

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4288308
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorLiu, Yin;Wang, Shuo;Li, Kunpeng;Sun, Wei;Song, Xueguan
    date accessioned2022-12-27T23:17:32Z
    date available2022-12-27T23:17:32Z
    date copyright8/9/2022 12:00:00 AM
    date issued2022
    identifier issn1050-0472
    identifier othermd_144_11_111706.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4288308
    description abstractMost practical multi-objective optimization problems are often characterized by two or more expensive and conflicting objectives, which require time-consuming simulations. Commonly used algorithms construct a surrogate model of each objective function from a few high-fidelity solutions. In order to further decrease the computational burden, adaptive infilling strategies for multi-objective problems are developed to guide the next infilling design for expensive evaluation and update the surrogate model as well as the Pareto front in an iterative manner. In this paper, a multi-objective infilling strategy integrating the Kriging model with a two-stage infilling framework is proposed, termed as ATKIS. This method allows exploitation and exploration alternately to pinpoint the infilling solution for improving the Pareto set and avoiding local over-exploitation simultaneously. At the local exploitation stage, Kriging-based prediction and uncertainty estimation are combined with Non-dominant Ranking and Minimum Relative Distance theories for determining a new design solution, which has maximum improvement relative to the current Pareto set. At the global exploration stage, Voronoi tessellation theory is employed to search for the sparsest position in the design space for a new evaluation. The proposed method is compared with five recent infilling strategies to investigate the performance of infilling ability using several numerical benchmarks. The experimental results show that the proposed method outperforms the other three strategies in improving both effectiveness and robustness using the improvement of hypervolume as the evaluating indicator. In addition, a lightweight optimization design of hoist sheaves shows that the proposed method can deal with real engineering problems, while significantly reducing the computational time and the number of expensive simulations of samples.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAn Adaptive Two-Stage Kriging-Based Infilling Strategy for Efficient Multi-Objective Global Optimization
    typeJournal Paper
    journal volume144
    journal issue11
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.4055122
    journal fristpage111706
    journal lastpage111706_16
    page16
    treeJournal of Mechanical Design:;2022:;volume( 144 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian