YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • ASME Open Journal of Engineering
    • View Item
    •   YE&T Library
    • ASME
    • ASME Open Journal of Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Storage-Coupled Nuclear Combined Cycle

    Source: ASME Open Journal of Engineering:;2022:;volume( 001 )::page 15001
    Author:
    Conlon, William M.;Forsberg, Charles W.
    DOI: 10.1115/1.4055277
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A new design paradigm for nuclear power plants is needed to complement the increasing adoption of low marginal cost variable renewable energy resources. The situation is reflected in the wholesale electricity price–duration curve with four distinct economic opportunities: (a) a hundred or so hours per year of high-value peaking power; (b) about 4000–5000 h of moderate electric prices; (c) about 2000 h per year when renewables set the marginal price at or near zero; and (d) about 1000 h of flexible ramping between the b and c regions. The current approach to the low-carbon energy transition reduces the need for baseload power and requires curtailment of conventional, nuclear, and even renewable generation, decreasing their capacity factors and increasing their fixed charges for electricity generation. Flexible low-carbon dispatchable power plants capable of daily cycling along with storage and time shifting of low-cost nondispatchable renewable power will be needed. Although nuclear power plants have demonstrated load-following capability, cycling can be limited by reactor kinetics (xenon poisoning) as well as by thermal stresses and fatigue considerations in the steam cycle. Storage of nuclear heat is hampered by the relatively low operating temperatures of existing nuclear reactors (but not advanced reactors) that lowers thermal to electric conversion efficiency, which in turn increases the required quantity of storage medium and the cost of storage. The quantity of storage medium can be reduced by integration of thermal energy storage with high-grade heat as in the liquid salt combined cycle (LSCC). The LSCC uses high-temperature gas turbine exhaust heat to increase the electricity output per unit of storage medium, uses the stored energy to add operating flexibility to a bottoming steam cycle, and substantially reduces the fuel heat rate. The low fuel heat rate improves economic competitiveness compared to alternative gas turbine-based power plants, especially when burning expensive fuels such as hydrogen. LSCC could be coupled to a nuclear power plant for time shifting both nuclear and renewable electricity and could support high utilization of a co-located hydrogen electrolysis plant. Further cost reduction could be achieved by using solid media for thermal energy storage, with the liquid salt used as a heat transfer medium.
    • Download: (1.068Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Storage-Coupled Nuclear Combined Cycle

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4288296
    Collections
    • ASME Open Journal of Engineering

    Show full item record

    contributor authorConlon, William M.;Forsberg, Charles W.
    date accessioned2022-12-27T23:17:15Z
    date available2022-12-27T23:17:15Z
    date copyright9/15/2022 12:00:00 AM
    date issued2022
    identifier issn2770-3495
    identifier otheraoje_1_015001.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4288296
    description abstractA new design paradigm for nuclear power plants is needed to complement the increasing adoption of low marginal cost variable renewable energy resources. The situation is reflected in the wholesale electricity price–duration curve with four distinct economic opportunities: (a) a hundred or so hours per year of high-value peaking power; (b) about 4000–5000 h of moderate electric prices; (c) about 2000 h per year when renewables set the marginal price at or near zero; and (d) about 1000 h of flexible ramping between the b and c regions. The current approach to the low-carbon energy transition reduces the need for baseload power and requires curtailment of conventional, nuclear, and even renewable generation, decreasing their capacity factors and increasing their fixed charges for electricity generation. Flexible low-carbon dispatchable power plants capable of daily cycling along with storage and time shifting of low-cost nondispatchable renewable power will be needed. Although nuclear power plants have demonstrated load-following capability, cycling can be limited by reactor kinetics (xenon poisoning) as well as by thermal stresses and fatigue considerations in the steam cycle. Storage of nuclear heat is hampered by the relatively low operating temperatures of existing nuclear reactors (but not advanced reactors) that lowers thermal to electric conversion efficiency, which in turn increases the required quantity of storage medium and the cost of storage. The quantity of storage medium can be reduced by integration of thermal energy storage with high-grade heat as in the liquid salt combined cycle (LSCC). The LSCC uses high-temperature gas turbine exhaust heat to increase the electricity output per unit of storage medium, uses the stored energy to add operating flexibility to a bottoming steam cycle, and substantially reduces the fuel heat rate. The low fuel heat rate improves economic competitiveness compared to alternative gas turbine-based power plants, especially when burning expensive fuels such as hydrogen. LSCC could be coupled to a nuclear power plant for time shifting both nuclear and renewable electricity and could support high utilization of a co-located hydrogen electrolysis plant. Further cost reduction could be achieved by using solid media for thermal energy storage, with the liquid salt used as a heat transfer medium.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleStorage-Coupled Nuclear Combined Cycle
    typeJournal Paper
    journal volume1
    journal titleASME Open Journal of Engineering
    identifier doi10.1115/1.4055277
    journal fristpage15001
    journal lastpage15001_11
    page11
    treeASME Open Journal of Engineering:;2022:;volume( 001 )
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian