YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • ASME Open Journal of Engineering
    • View Item
    •   YE&T Library
    • ASME
    • ASME Open Journal of Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Minimum Quantity Cutting Fluid Application for Grinding Weld Flash: Surface Integrity Evaluation

    Source: ASME Open Journal of Engineering:;2022:;volume( 001 )::page 14503
    Author:
    Rangasamy, Nithin;Rakurty, Chandra Sekhar;Maurer, Zach
    DOI: 10.1115/1.4054948
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The effect of the grinding process for weld flash removal on the surface integrity of the welded joint has not been researched. The surface integrity of the welded joint is essential for the bandsaw blade life and to prevent any premature failure at the weld joint due to fatigue loading (a band saw blade undergoes mainly cyclic bending fatigue during its service). In this study, the effects of using different cutting fluid combinations on the grinding of weld flash in medium carbon alloy steel were carried out. The use of compressed air (CA) as a sustainable solution for grinding weld flash was explored. An experimental investigation of four different cutting fluid applications (dry/no cutting fluid, compressed air, minimum quantity lubricant using vegetable oil, and minimum quantity coolant using water-soluble oil) was carried out. The surface roughness, sub-surface residual stresses, and microhardness of the ground region were measured. This is a first-of-the-kind study on the effect of the flash removal process on the surface integrity of the welded joint. The results show that the surface integrity of the welded joint is significantly influenced by the cutting fluid application used during the grinding process of the flash. Dry grinding, the current industry standard for grinding weld flash in band saw blades, produced surface tensile residual stresses (24.82 MPa), lowest sub-surface microhardness (43.28 HRc), and the highest surface roughness (3.40 µm). In comparison, the air application had the highest surface compressive residual stresses (−289.57 MPa), highest sub-surface microhardness (48.67 HRc), and relatively low surface roughness (1.61 µm). This study provides the road map for selecting the cutting fluid application for grinding weld flash produced by the resistance welding process in the band sawing industry.
    • Download: (1.162Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Minimum Quantity Cutting Fluid Application for Grinding Weld Flash: Surface Integrity Evaluation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4288285
    Collections
    • ASME Open Journal of Engineering

    Show full item record

    contributor authorRangasamy, Nithin;Rakurty, Chandra Sekhar;Maurer, Zach
    date accessioned2022-12-27T23:16:57Z
    date available2022-12-27T23:16:57Z
    date copyright7/19/2022 12:00:00 AM
    date issued2022
    identifier issn2770-3495
    identifier otheraoje_1_014503.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4288285
    description abstractThe effect of the grinding process for weld flash removal on the surface integrity of the welded joint has not been researched. The surface integrity of the welded joint is essential for the bandsaw blade life and to prevent any premature failure at the weld joint due to fatigue loading (a band saw blade undergoes mainly cyclic bending fatigue during its service). In this study, the effects of using different cutting fluid combinations on the grinding of weld flash in medium carbon alloy steel were carried out. The use of compressed air (CA) as a sustainable solution for grinding weld flash was explored. An experimental investigation of four different cutting fluid applications (dry/no cutting fluid, compressed air, minimum quantity lubricant using vegetable oil, and minimum quantity coolant using water-soluble oil) was carried out. The surface roughness, sub-surface residual stresses, and microhardness of the ground region were measured. This is a first-of-the-kind study on the effect of the flash removal process on the surface integrity of the welded joint. The results show that the surface integrity of the welded joint is significantly influenced by the cutting fluid application used during the grinding process of the flash. Dry grinding, the current industry standard for grinding weld flash in band saw blades, produced surface tensile residual stresses (24.82 MPa), lowest sub-surface microhardness (43.28 HRc), and the highest surface roughness (3.40 µm). In comparison, the air application had the highest surface compressive residual stresses (−289.57 MPa), highest sub-surface microhardness (48.67 HRc), and relatively low surface roughness (1.61 µm). This study provides the road map for selecting the cutting fluid application for grinding weld flash produced by the resistance welding process in the band sawing industry.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMinimum Quantity Cutting Fluid Application for Grinding Weld Flash: Surface Integrity Evaluation
    typeJournal Paper
    journal volume1
    journal titleASME Open Journal of Engineering
    identifier doi10.1115/1.4054948
    journal fristpage14503
    journal lastpage14503_8
    page8
    treeASME Open Journal of Engineering:;2022:;volume( 001 )
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian