YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • ASME Open Journal of Engineering
    • View Item
    •   YE&T Library
    • ASME
    • ASME Open Journal of Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Duel Solutions in Hiemenz Flow of an Electro-Conductive Viscous Nanofluid Containing Elliptic Single-/Multi-Wall Carbon Nanotubes With Magnetic Induction Effects

    Source: ASME Open Journal of Engineering:;2022:;volume( 001 )::page 11040
    Author:
    Ferdows, M.;Tazin, Tahia;Bég, O. Anwar;Bég, Tasveer A.
    DOI: 10.1115/1.4055278
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Modern magnetic nanomaterials are increasingly embracing new technologies including smart coatings, intelligent lubricants, and functional working fluids in energy systems. Motivated by studying the manufacturing magnetofluid dynamics of electroconductive viscous nanofluids, in this work, we analyzed the magnetohydrodynamics (MHD) convection flow and heat transfer of an incompressible viscous nanofluid containing carbon nanotubes (CNTs) past a stretching sheet. Magnetic induction effects are included. Similarity solutions are derived where possible in addition to dual branch solutions. Both single-wall carbon nanotubes (SWCNTs) and multi-wall carbon nanotubes (MWCNTs) are considered taking water and kerosene oil as base fluids. The governing continuity, momentum, magnetic induction, and heat conservation partial differential equations are converted to coupled, nonlinear systems of ordinary differential equations via similarity transformations. The emerging control parameters are shown to be Prandtl number (Pr), nanoparticle volume fraction parameter (φ), inverse magnetic Prandtl number (λ), magnetic body force parameter (β) and stretching rate parameter (A), and the type of carbon nanotube. Numerical solutions to the ordinary differential boundary value problem are conducted with the efficient bvp4c solver in matlab. Validation with earlier studies is included. Computations of reduced skin friction and reduced wall heat transfer rate (Nusselt number) are also comprised in order to identify the critical parameter values for the existence of dual solutions (upper and lower branch) for velocity, temperature, and induced magnetic field functions. Dual solutions are shown to exist for some cases studied. The simulations indicate that when the stretching rate ratio parameter is less than 1, SWCNT nanofluids exhibit higher velocity than MWCNT nanofluids with increasing magnetic parameters for water- and kerosene-oil-based CNT nanofluids. Generally, SWCNT nanofluids achieve enhanced heat transfer performance compared to MWCNT nanofluids. Water-based CNT nanofluids also attain greater flow acceleration compared with kerosene-oil-based CNT nanofluids.
    • Download: (1.286Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Duel Solutions in Hiemenz Flow of an Electro-Conductive Viscous Nanofluid Containing Elliptic Single-/Multi-Wall Carbon Nanotubes With Magnetic Induction Effects

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4288274
    Collections
    • ASME Open Journal of Engineering

    Show full item record

    contributor authorFerdows, M.;Tazin, Tahia;Bég, O. Anwar;Bég, Tasveer A.
    date accessioned2022-12-27T23:16:42Z
    date available2022-12-27T23:16:42Z
    date copyright9/15/2022 12:00:00 AM
    date issued2022
    identifier issn2770-3495
    identifier otheraoje_1_011040.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4288274
    description abstractModern magnetic nanomaterials are increasingly embracing new technologies including smart coatings, intelligent lubricants, and functional working fluids in energy systems. Motivated by studying the manufacturing magnetofluid dynamics of electroconductive viscous nanofluids, in this work, we analyzed the magnetohydrodynamics (MHD) convection flow and heat transfer of an incompressible viscous nanofluid containing carbon nanotubes (CNTs) past a stretching sheet. Magnetic induction effects are included. Similarity solutions are derived where possible in addition to dual branch solutions. Both single-wall carbon nanotubes (SWCNTs) and multi-wall carbon nanotubes (MWCNTs) are considered taking water and kerosene oil as base fluids. The governing continuity, momentum, magnetic induction, and heat conservation partial differential equations are converted to coupled, nonlinear systems of ordinary differential equations via similarity transformations. The emerging control parameters are shown to be Prandtl number (Pr), nanoparticle volume fraction parameter (φ), inverse magnetic Prandtl number (λ), magnetic body force parameter (β) and stretching rate parameter (A), and the type of carbon nanotube. Numerical solutions to the ordinary differential boundary value problem are conducted with the efficient bvp4c solver in matlab. Validation with earlier studies is included. Computations of reduced skin friction and reduced wall heat transfer rate (Nusselt number) are also comprised in order to identify the critical parameter values for the existence of dual solutions (upper and lower branch) for velocity, temperature, and induced magnetic field functions. Dual solutions are shown to exist for some cases studied. The simulations indicate that when the stretching rate ratio parameter is less than 1, SWCNT nanofluids exhibit higher velocity than MWCNT nanofluids with increasing magnetic parameters for water- and kerosene-oil-based CNT nanofluids. Generally, SWCNT nanofluids achieve enhanced heat transfer performance compared to MWCNT nanofluids. Water-based CNT nanofluids also attain greater flow acceleration compared with kerosene-oil-based CNT nanofluids.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDuel Solutions in Hiemenz Flow of an Electro-Conductive Viscous Nanofluid Containing Elliptic Single-/Multi-Wall Carbon Nanotubes With Magnetic Induction Effects
    typeJournal Paper
    journal volume1
    journal titleASME Open Journal of Engineering
    identifier doi10.1115/1.4055278
    journal fristpage11040
    journal lastpage11040_14
    page14
    treeASME Open Journal of Engineering:;2022:;volume( 001 )
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian