YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Digital Twin-Driven Sheet Metal Forming: Modeling and Application for Stamping Considering Mold Wear

    Source: Journal of Manufacturing Science and Engineering:;2022:;volume( 144 ):;issue: 012::page 121003
    Author:
    Gan, Lei;Li, Lei;Huang, Haihong
    DOI: 10.1115/1.4054902
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Existing various constructed models of stamping provide great support to develop the forming quality improvement and energy-saving strategies. However, the immutable model cannot reflect the actual states of the process as the wear of the mold goes, and the inaccuracy model will lead to the failure of the strategies. To solve this problem, a Digital Twin-driven modeling method considering mold wear for stamping was proposed in this paper. The model of punch force and forming quality considering the coefficients that will vary with the states of mold wear was first built in the virtual space. The real-time punch force was acquired and inputted to the virtual space, and it was then compared with the punch force obtained by the Digital Twin model for monitoring the mold wear. If the difference of punch force is greater than the threshold, the friction coefficients update starts via the Particle Swarm Optimization with Differential Evolution (PSO-DE) algorithm. To validate the effectiveness, the method was applied in the process to form a clutch shell, and the results show that the maximum deviation of the punch force between the updated Digital Twin model and the measured value does not exceed 5%. Optimization results in the application show a 14.35% reduction in the maximum thinning ratio of the stamping part and an 8.9% reduction in the process energy. The Digital Twin-driven modeling assists in quality improvement and energy consumption reduction in sheet metal forming.
    • Download: (1.336Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Digital Twin-Driven Sheet Metal Forming: Modeling and Application for Stamping Considering Mold Wear

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4288273
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorGan, Lei;Li, Lei;Huang, Haihong
    date accessioned2022-12-27T23:16:39Z
    date available2022-12-27T23:16:39Z
    date copyright7/27/2022 12:00:00 AM
    date issued2022
    identifier issn1087-1357
    identifier othermanu_144_12_121003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4288273
    description abstractExisting various constructed models of stamping provide great support to develop the forming quality improvement and energy-saving strategies. However, the immutable model cannot reflect the actual states of the process as the wear of the mold goes, and the inaccuracy model will lead to the failure of the strategies. To solve this problem, a Digital Twin-driven modeling method considering mold wear for stamping was proposed in this paper. The model of punch force and forming quality considering the coefficients that will vary with the states of mold wear was first built in the virtual space. The real-time punch force was acquired and inputted to the virtual space, and it was then compared with the punch force obtained by the Digital Twin model for monitoring the mold wear. If the difference of punch force is greater than the threshold, the friction coefficients update starts via the Particle Swarm Optimization with Differential Evolution (PSO-DE) algorithm. To validate the effectiveness, the method was applied in the process to form a clutch shell, and the results show that the maximum deviation of the punch force between the updated Digital Twin model and the measured value does not exceed 5%. Optimization results in the application show a 14.35% reduction in the maximum thinning ratio of the stamping part and an 8.9% reduction in the process energy. The Digital Twin-driven modeling assists in quality improvement and energy consumption reduction in sheet metal forming.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDigital Twin-Driven Sheet Metal Forming: Modeling and Application for Stamping Considering Mold Wear
    typeJournal Paper
    journal volume144
    journal issue12
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4054902
    journal fristpage121003
    journal lastpage121003_12
    page12
    treeJournal of Manufacturing Science and Engineering:;2022:;volume( 144 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian