YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mechanical Characterization of Compliant Cellular Robots. Part II: Active Strain

    Source: Journal of Mechanisms and Robotics:;2022:;volume( 015 ):;issue: 002::page 21013
    Author:
    Singh, Gaurav;Nawroj, Ahsan;Dollar, Aaron M.
    DOI: 10.1115/1.4054613
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Modular active cell robots (MACROs) is a design approach in which a large number of linear actuators and passive compliant joints are assembled to create an active structure with a repeating unit cell. Such a mesh-like robotic structure can be actuated to achieve large deformation and shape-change. In this two-part paper, we use finite element analysis (FEA) to model the deformation behavior of different MACRO mesh topologies and evaluate their passive and active mechanical characteristics. In Part I, we presented the passive stiffness characteristics of different MACRO meshes. In this Part II of the paper, we investigate the active strain characteristics of planar MACRO meshes. Using FEA, we quantify and compare the strains generated for the specific choice of MACRO mesh topology and further for the specific choice of actuators actuated in that particular mesh. We simulate a series of actuation modes that are based on the angular orientation of the actuators within the mesh and show that such actuation modes result in deformation that is independent of the size of the mesh. We also show that there exists a subset of such actuation modes that spans the range of deformation behavior. Finally, we compare the actuation effort required to actuate different MACRO meshes and show that the actuation effort is related to the nodal connectivity of the mesh.
    • Download: (1.599Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mechanical Characterization of Compliant Cellular Robots. Part II: Active Strain

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4288247
    Collections
    • Journal of Mechanisms and Robotics

    Show full item record

    contributor authorSingh, Gaurav;Nawroj, Ahsan;Dollar, Aaron M.
    date accessioned2022-12-27T23:15:52Z
    date available2022-12-27T23:15:52Z
    date copyright6/23/2022 12:00:00 AM
    date issued2022
    identifier issn1942-4302
    identifier otherjmr_15_2_021013.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4288247
    description abstractModular active cell robots (MACROs) is a design approach in which a large number of linear actuators and passive compliant joints are assembled to create an active structure with a repeating unit cell. Such a mesh-like robotic structure can be actuated to achieve large deformation and shape-change. In this two-part paper, we use finite element analysis (FEA) to model the deformation behavior of different MACRO mesh topologies and evaluate their passive and active mechanical characteristics. In Part I, we presented the passive stiffness characteristics of different MACRO meshes. In this Part II of the paper, we investigate the active strain characteristics of planar MACRO meshes. Using FEA, we quantify and compare the strains generated for the specific choice of MACRO mesh topology and further for the specific choice of actuators actuated in that particular mesh. We simulate a series of actuation modes that are based on the angular orientation of the actuators within the mesh and show that such actuation modes result in deformation that is independent of the size of the mesh. We also show that there exists a subset of such actuation modes that spans the range of deformation behavior. Finally, we compare the actuation effort required to actuate different MACRO meshes and show that the actuation effort is related to the nodal connectivity of the mesh.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMechanical Characterization of Compliant Cellular Robots. Part II: Active Strain
    typeJournal Paper
    journal volume15
    journal issue2
    journal titleJournal of Mechanisms and Robotics
    identifier doi10.1115/1.4054613
    journal fristpage21013
    journal lastpage21013_10
    page10
    treeJournal of Mechanisms and Robotics:;2022:;volume( 015 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian