YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Development and Evaluation of a Passive Multiloop Wearable Hand Device for Natural Motion

    Source: Journal of Mechanisms and Robotics:;2022:;volume( 015 ):;issue: 001::page 11004
    Author:
    Robson, Nina;Yun Chen, Bin;Won, Jong-Seob;Song Soh, Gim
    DOI: 10.1115/1.4054168
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This article describes the development and evaluation of our passively actuated closed-loop articulated wearable (CLAW) that uses a common slider to passively drive its exo-fingers for use in physical training of people with limited hand mobility. Our design approach utilizes physiological tasks for dimensional synthesis and yields a variety of design candidates that fulfill the desired fingertip precision grasping trajectory. Once it is ensured that the synthesized fingertip motion is close to the physiological fingertip grasping trajectories, performance assessment criteria related to user–device interference and natural joint angle movement are taken into account. After the most preferred design for each finger is chosen, minor modifications are made related to substituting the backbone chain with the wearer’s limb to provide the skeletal structure for the customized passive device. Subsequently, we evaluate it for natural joint motion based on a novel design candidate assessment method. A hand prototype is printed, and its preliminary performance regarding natural joint motion, wearability, and scalability are assessed. The pilot experimental test on a range of healthy subjects with different hand/finger sizes shows that the CLAW hand is easy to operate and guides the user’s fingers without causing any discomfort. It also ensures both precision and power grasping in a natural manner. This study establishes the importance of incorporating novel design candidate assessment techniques, based on human finger kinematic models, on a conceptual design level that can assist in finding design candidates for natural joint motion coordination.
    • Download: (1019.Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Development and Evaluation of a Passive Multiloop Wearable Hand Device for Natural Motion

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4288219
    Collections
    • Journal of Mechanisms and Robotics

    Show full item record

    contributor authorRobson, Nina;Yun Chen, Bin;Won, Jong-Seob;Song Soh, Gim
    date accessioned2022-12-27T23:15:17Z
    date available2022-12-27T23:15:17Z
    date copyright4/25/2022 12:00:00 AM
    date issued2022
    identifier issn1942-4302
    identifier otherjmr_15_1_011004.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4288219
    description abstractThis article describes the development and evaluation of our passively actuated closed-loop articulated wearable (CLAW) that uses a common slider to passively drive its exo-fingers for use in physical training of people with limited hand mobility. Our design approach utilizes physiological tasks for dimensional synthesis and yields a variety of design candidates that fulfill the desired fingertip precision grasping trajectory. Once it is ensured that the synthesized fingertip motion is close to the physiological fingertip grasping trajectories, performance assessment criteria related to user–device interference and natural joint angle movement are taken into account. After the most preferred design for each finger is chosen, minor modifications are made related to substituting the backbone chain with the wearer’s limb to provide the skeletal structure for the customized passive device. Subsequently, we evaluate it for natural joint motion based on a novel design candidate assessment method. A hand prototype is printed, and its preliminary performance regarding natural joint motion, wearability, and scalability are assessed. The pilot experimental test on a range of healthy subjects with different hand/finger sizes shows that the CLAW hand is easy to operate and guides the user’s fingers without causing any discomfort. It also ensures both precision and power grasping in a natural manner. This study establishes the importance of incorporating novel design candidate assessment techniques, based on human finger kinematic models, on a conceptual design level that can assist in finding design candidates for natural joint motion coordination.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDevelopment and Evaluation of a Passive Multiloop Wearable Hand Device for Natural Motion
    typeJournal Paper
    journal volume15
    journal issue1
    journal titleJournal of Mechanisms and Robotics
    identifier doi10.1115/1.4054168
    journal fristpage11004
    journal lastpage11004_11
    page11
    treeJournal of Mechanisms and Robotics:;2022:;volume( 015 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian