YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • ASME Open Journal of Engineering
    • View Item
    •   YE&T Library
    • ASME
    • ASME Open Journal of Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Viscous Dissipation and Joule Heating Effects on 3D Magnetohydrodynamics Flow of Williamson Nanofluid in a Porous Medium Over a Stretching Surface With Melting Condition

    Source: ASME Open Journal of Engineering:;2022:;volume( 001 )::page 11033
    Author:
    Tarakaramu, Nainaru;Sivakumar, Narsu;Satya Narayana, P. V.;Sivajothi, Ramalingam
    DOI: 10.1115/1.4055183
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The aim of the current article is to demonstrate heat transfer characteristics of Williamson nanofluid flow through a stretching surface with a porous medium in two lateral directions. Heat generation, nonlinear thermal radiation, viscous dissipation, Joule heating, and chemical reaction are also considered in time-independent boundary layer equations of heat and concentration. One more significant boundary condition is the melting condition which is introduced in this study for the purpose of more heat generation and suitable transformations by the satisfied continuity equation are selected, These are used to translate the coupled time-independent partial differential equations into a coupled nonlinear system of ordinary differential equations. The translated equations are computed as numerical solutions by utilizing the Runge–Kutta–Fehlberg (R–K–F) fourth-order algorithm with the help of a shooting procedure in matlab (bvp4) programming. The significance of physical emerging nondimensional parameters is predicted through graphs and discussed numerically in detail on mass of conservation, temperature, and concentration. The numerical values of the coefficient of the skin friction are displayed through a table with large enhanced values of nondimensional parameters and heat transfer rate explained in detail through graphs.
    • Download: (595.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Viscous Dissipation and Joule Heating Effects on 3D Magnetohydrodynamics Flow of Williamson Nanofluid in a Porous Medium Over a Stretching Surface With Melting Condition

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4288196
    Collections
    • ASME Open Journal of Engineering

    Show full item record

    contributor authorTarakaramu, Nainaru;Sivakumar, Narsu;Satya Narayana, P. V.;Sivajothi, Ramalingam
    date accessioned2022-12-27T23:14:35Z
    date available2022-12-27T23:14:35Z
    date copyright8/22/2022 12:00:00 AM
    date issued2022
    identifier issn2770-3495
    identifier otheraoje_1_011033.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4288196
    description abstractThe aim of the current article is to demonstrate heat transfer characteristics of Williamson nanofluid flow through a stretching surface with a porous medium in two lateral directions. Heat generation, nonlinear thermal radiation, viscous dissipation, Joule heating, and chemical reaction are also considered in time-independent boundary layer equations of heat and concentration. One more significant boundary condition is the melting condition which is introduced in this study for the purpose of more heat generation and suitable transformations by the satisfied continuity equation are selected, These are used to translate the coupled time-independent partial differential equations into a coupled nonlinear system of ordinary differential equations. The translated equations are computed as numerical solutions by utilizing the Runge–Kutta–Fehlberg (R–K–F) fourth-order algorithm with the help of a shooting procedure in matlab (bvp4) programming. The significance of physical emerging nondimensional parameters is predicted through graphs and discussed numerically in detail on mass of conservation, temperature, and concentration. The numerical values of the coefficient of the skin friction are displayed through a table with large enhanced values of nondimensional parameters and heat transfer rate explained in detail through graphs.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleViscous Dissipation and Joule Heating Effects on 3D Magnetohydrodynamics Flow of Williamson Nanofluid in a Porous Medium Over a Stretching Surface With Melting Condition
    typeJournal Paper
    journal volume1
    journal titleASME Open Journal of Engineering
    identifier doi10.1115/1.4055183
    journal fristpage11033
    journal lastpage11033_7
    page7
    treeASME Open Journal of Engineering:;2022:;volume( 001 )
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian