YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Electrochemical Energy Conversion and Storage
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Electrochemical Energy Conversion and Storage
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Influence of Off Gas Recirculation on the Intermediate Temperature SOFC With Partial Oxidation Reformer

    Source: Journal of Electrochemical Energy Conversion and Storage:;2022:;volume( 020 ):;issue: 003::page 31001
    Author:
    Li, Siyuan;Zhang, Zhe;Li, Guoxiang;Bai, Shuzhan
    DOI: 10.1115/1.4055393
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Solid oxide fuel cell (SOFC) is a clean and efficient energy utilization technology. Partial oxidation reforming (POX) can be used to simplify the SOFC system structure, but its lower hydrogen production rate deteriorates the system performance. A wise method may be combining anode off gas recirculation (AOGR) and cathode off gas recirculation (COGR) with POX. Thus, their influence on the coupled system of intermediate temperature SOFC and POX is researched in detail in this paper. Results show that the reforming process gradually changes from exothermic to endothermic as AOGR rate increases. Meanwhile, its oxygen demand declines sharply and the process can even be self-sustained without external air input at the AOGR rate of 0.5 and 0.6. The application of AOGR can improve electrical efficiency by up to 51%, but at the expense of thermal efficiency. Excessive AOGR rates will result in decreased cell voltage and insufficient energy supply to the after-burner, so it should be restricted within a reasonable range and the best recommended value is 0.5. The application of COGR has little effect on fuel line parameters, so it causes little deterioration in electrical efficiency while improving thermal efficiency. Besides, the cell voltage is also insensitive to it. The combination of AOGR and COGR can obtain better fuel economy and larger cogeneration scale simultaneously at the cost of a tiny electrical output power, while an optimal balance between three efficiencies is also achieved.
    • Download: (1009.Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Influence of Off Gas Recirculation on the Intermediate Temperature SOFC With Partial Oxidation Reformer

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4288191
    Collections
    • Journal of Electrochemical Energy Conversion and Storage

    Show full item record

    contributor authorLi, Siyuan;Zhang, Zhe;Li, Guoxiang;Bai, Shuzhan
    date accessioned2022-12-27T23:14:27Z
    date available2022-12-27T23:14:27Z
    date copyright9/14/2022 12:00:00 AM
    date issued2022
    identifier issn2381-6872
    identifier otherjeecs_20_3_031001.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4288191
    description abstractSolid oxide fuel cell (SOFC) is a clean and efficient energy utilization technology. Partial oxidation reforming (POX) can be used to simplify the SOFC system structure, but its lower hydrogen production rate deteriorates the system performance. A wise method may be combining anode off gas recirculation (AOGR) and cathode off gas recirculation (COGR) with POX. Thus, their influence on the coupled system of intermediate temperature SOFC and POX is researched in detail in this paper. Results show that the reforming process gradually changes from exothermic to endothermic as AOGR rate increases. Meanwhile, its oxygen demand declines sharply and the process can even be self-sustained without external air input at the AOGR rate of 0.5 and 0.6. The application of AOGR can improve electrical efficiency by up to 51%, but at the expense of thermal efficiency. Excessive AOGR rates will result in decreased cell voltage and insufficient energy supply to the after-burner, so it should be restricted within a reasonable range and the best recommended value is 0.5. The application of COGR has little effect on fuel line parameters, so it causes little deterioration in electrical efficiency while improving thermal efficiency. Besides, the cell voltage is also insensitive to it. The combination of AOGR and COGR can obtain better fuel economy and larger cogeneration scale simultaneously at the cost of a tiny electrical output power, while an optimal balance between three efficiencies is also achieved.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleInfluence of Off Gas Recirculation on the Intermediate Temperature SOFC With Partial Oxidation Reformer
    typeJournal Paper
    journal volume20
    journal issue3
    journal titleJournal of Electrochemical Energy Conversion and Storage
    identifier doi10.1115/1.4055393
    journal fristpage31001
    journal lastpage31001_10
    page10
    treeJournal of Electrochemical Energy Conversion and Storage:;2022:;volume( 020 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian