YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computing and Information Science in Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computing and Information Science in Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Nested Weighted Tchebycheff Multi-Objective Bayesian Optimization Approach for Flexibility of Unknown Utopia Estimation in Expensive Black-Box Design Problems

    Source: Journal of Computing and Information Science in Engineering:;2022:;volume( 023 ):;issue: 001::page 14501
    Author:
    Biswas, Arpan;Fuentes, Claudio;Hoyle, Christopher
    DOI: 10.1115/1.4054480
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: We propose a nested weighted Tchebycheff Multi-objective Bayesian optimization (WTB MOBO) framework where we built a regression model selection procedure from the ensemble of models, toward better estimation of the uncertain parameters (utopia) of the weighted Tchebycheff expensive black-box multi-objective function. In our previous work, a weighted Tchebycheff MOBO approach has been demonstrated which attempts to estimate the model parameters (utopia) in formulating the acquisition function of the weighted Tchebycheff multi-objective black-box functions, through calibration using an a priori selected regression model. However, the existing MOBO model lacks flexibility in selecting the appropriate regression models given the guided sampled data and, therefore, can under-fit or over-fit as the iterations of the MOBO progress. This ultimately can reduce the overall MOBO performance. As, in general, it is too complex to a priori guarantee a best model, this motivates us to consider a portfolio of different families (simple-to-complex) of predictive models that have been fitted with current training data guided by the WTB MOBO, and the best model is selected following a user-defined prediction root-mean-square error-based approach. The proposed approach is implemented in optimizing a thin tube design under constant loading of temperature and pressure, minimizing the risk of creep-fatigue failure and design cost. Finally, the nested WTB MOBO model performance is compared with different MOBO frameworks with respect to accuracy in parameter estimation, Pareto-optimal solutions, and function evaluation cost. This approach is generalized enough to consider different families of predictive models in the portfolio for best model selection, where the overall design architecture allows for solving any high-dimensional (multiple functions) complex black-box problems and can be extended to any other global criterion multi-objective optimization methods where prior knowledge of utopia is required.
    • Download: (725.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Nested Weighted Tchebycheff Multi-Objective Bayesian Optimization Approach for Flexibility of Unknown Utopia Estimation in Expensive Black-Box Design Problems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4288128
    Collections
    • Journal of Computing and Information Science in Engineering

    Show full item record

    contributor authorBiswas, Arpan;Fuentes, Claudio;Hoyle, Christopher
    date accessioned2022-12-27T23:12:55Z
    date available2022-12-27T23:12:55Z
    date copyright5/20/2022 12:00:00 AM
    date issued2022
    identifier issn1530-9827
    identifier otherjcise_23_1_014501.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4288128
    description abstractWe propose a nested weighted Tchebycheff Multi-objective Bayesian optimization (WTB MOBO) framework where we built a regression model selection procedure from the ensemble of models, toward better estimation of the uncertain parameters (utopia) of the weighted Tchebycheff expensive black-box multi-objective function. In our previous work, a weighted Tchebycheff MOBO approach has been demonstrated which attempts to estimate the model parameters (utopia) in formulating the acquisition function of the weighted Tchebycheff multi-objective black-box functions, through calibration using an a priori selected regression model. However, the existing MOBO model lacks flexibility in selecting the appropriate regression models given the guided sampled data and, therefore, can under-fit or over-fit as the iterations of the MOBO progress. This ultimately can reduce the overall MOBO performance. As, in general, it is too complex to a priori guarantee a best model, this motivates us to consider a portfolio of different families (simple-to-complex) of predictive models that have been fitted with current training data guided by the WTB MOBO, and the best model is selected following a user-defined prediction root-mean-square error-based approach. The proposed approach is implemented in optimizing a thin tube design under constant loading of temperature and pressure, minimizing the risk of creep-fatigue failure and design cost. Finally, the nested WTB MOBO model performance is compared with different MOBO frameworks with respect to accuracy in parameter estimation, Pareto-optimal solutions, and function evaluation cost. This approach is generalized enough to consider different families of predictive models in the portfolio for best model selection, where the overall design architecture allows for solving any high-dimensional (multiple functions) complex black-box problems and can be extended to any other global criterion multi-objective optimization methods where prior knowledge of utopia is required.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Nested Weighted Tchebycheff Multi-Objective Bayesian Optimization Approach for Flexibility of Unknown Utopia Estimation in Expensive Black-Box Design Problems
    typeJournal Paper
    journal volume23
    journal issue1
    journal titleJournal of Computing and Information Science in Engineering
    identifier doi10.1115/1.4054480
    journal fristpage14501
    journal lastpage14501_9
    page9
    treeJournal of Computing and Information Science in Engineering:;2022:;volume( 023 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian