YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computing and Information Science in Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computing and Information Science in Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Uncertainty Quantification and Optimal Robust Design for Machining Operations

    Source: Journal of Computing and Information Science in Engineering:;2022:;volume( 023 ):;issue: 001::page 11005
    Author:
    Wan, Jinming;Che, Yiming;Wang, Zimo;Cheng, Changqing
    DOI: 10.1115/1.4055039
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this study, we carry out robust optimal design for the machining operations, one key process in wafer polishing in chip manufacturing, aiming to avoid the peculiar regenerative chatter and maximize the material removal rate (MRR) considering the inherent material and process uncertainty. More specifically, we characterize the cutting tool dynamics using a delay differential equation (DDE) and enlist the temporal finite element method (TFEM) to derive its approximate solution and stability index given process settings or design variables. To further quantify the inherent uncertainty, replications of TFEM under different realizations of random uncontrollable variables are performed, which however incurs extra computational burden. To eschew the deployment of such a crude Monte Carlo (MC) approach at each design setting, we integrate the stochastic TFEM with a stochastic surrogate model, stochastic kriging, in an active learning framework to sequentially approximate the stability boundary. The numerical result suggests that the nominal stability boundary attained from this method is on par with that from the crude MC, but only demands a fraction of the computational overhead. To further ensure the robustness of process stability, we adopt another surrogate, the Gaussian process, to predict the variance of the stability index at unexplored design points and identify the robust stability boundary per the conditional value at risk (CVaR) criterion. Therefrom, an optimal design in the robust stable region that maximizes the MRR can be identified.
    • Download: (921.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Uncertainty Quantification and Optimal Robust Design for Machining Operations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4288126
    Collections
    • Journal of Computing and Information Science in Engineering

    Show full item record

    contributor authorWan, Jinming;Che, Yiming;Wang, Zimo;Cheng, Changqing
    date accessioned2022-12-27T23:12:51Z
    date available2022-12-27T23:12:51Z
    date copyright8/5/2022 12:00:00 AM
    date issued2022
    identifier issn1530-9827
    identifier otherjcise_23_1_011005.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4288126
    description abstractIn this study, we carry out robust optimal design for the machining operations, one key process in wafer polishing in chip manufacturing, aiming to avoid the peculiar regenerative chatter and maximize the material removal rate (MRR) considering the inherent material and process uncertainty. More specifically, we characterize the cutting tool dynamics using a delay differential equation (DDE) and enlist the temporal finite element method (TFEM) to derive its approximate solution and stability index given process settings or design variables. To further quantify the inherent uncertainty, replications of TFEM under different realizations of random uncontrollable variables are performed, which however incurs extra computational burden. To eschew the deployment of such a crude Monte Carlo (MC) approach at each design setting, we integrate the stochastic TFEM with a stochastic surrogate model, stochastic kriging, in an active learning framework to sequentially approximate the stability boundary. The numerical result suggests that the nominal stability boundary attained from this method is on par with that from the crude MC, but only demands a fraction of the computational overhead. To further ensure the robustness of process stability, we adopt another surrogate, the Gaussian process, to predict the variance of the stability index at unexplored design points and identify the robust stability boundary per the conditional value at risk (CVaR) criterion. Therefrom, an optimal design in the robust stable region that maximizes the MRR can be identified.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleUncertainty Quantification and Optimal Robust Design for Machining Operations
    typeJournal Paper
    journal volume23
    journal issue1
    journal titleJournal of Computing and Information Science in Engineering
    identifier doi10.1115/1.4055039
    journal fristpage11005
    journal lastpage11005_11
    page11
    treeJournal of Computing and Information Science in Engineering:;2022:;volume( 023 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian