YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Theoretical Model to Predict Pool Boiling Critical Heat Flux for Micro/Nano-Structured Surfaces

    Source: Journal of Heat Transfer:;2022:;volume( 144 ):;issue: 010::page 101601
    Author:
    Bharadwaj, A.;Misra, R. D.
    DOI: 10.1115/1.4054899
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Accurate estimation of critical heat flux (CHF) is essential in determining the maximum heat a boiling system is capable of extracting. This study presents a theoretical model for predicting CHF over microchannel, unidirectionally roughened, and coated surfaces. The researchers started developing theoretical models on this phenomenon considering the hydrodynamic instability. However, effects of parameters like capillarity, wettability, wicking ability, and surface geometry have been considered in the theoretical models developed in recent years. In the present work, a theoretical model has been developed to predict the CHF for pool boiling applications by combining these factors. The capillary effect causes the liquid microlayer beneath the evaporating bubble to occupy the dry spot and thus delay CHF. Hence, in this model, the capillary force has been added along with the momentum, hydrostatic, and surface tension forces acting at the liquid–vapor interface on the evaporating vapor bubble. The roughness factor has also been factored in with the contact angle to incorporate the effect of change in contact area of the solid–liquid interface in rough surfaces. The results from the model agree with the results of previously conducted experimental studies with 20% accuracy. The correlation is primarily derived for microchannels and has also been extended to randomly roughened surfaces with micro/nanostructures.
    • Download: (1.388Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Theoretical Model to Predict Pool Boiling Critical Heat Flux for Micro/Nano-Structured Surfaces

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4288071
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorBharadwaj, A.;Misra, R. D.
    date accessioned2022-12-27T23:11:37Z
    date available2022-12-27T23:11:37Z
    date copyright7/19/2022 12:00:00 AM
    date issued2022
    identifier issn0022-1481
    identifier otherht_144_10_101601.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4288071
    description abstractAccurate estimation of critical heat flux (CHF) is essential in determining the maximum heat a boiling system is capable of extracting. This study presents a theoretical model for predicting CHF over microchannel, unidirectionally roughened, and coated surfaces. The researchers started developing theoretical models on this phenomenon considering the hydrodynamic instability. However, effects of parameters like capillarity, wettability, wicking ability, and surface geometry have been considered in the theoretical models developed in recent years. In the present work, a theoretical model has been developed to predict the CHF for pool boiling applications by combining these factors. The capillary effect causes the liquid microlayer beneath the evaporating bubble to occupy the dry spot and thus delay CHF. Hence, in this model, the capillary force has been added along with the momentum, hydrostatic, and surface tension forces acting at the liquid–vapor interface on the evaporating vapor bubble. The roughness factor has also been factored in with the contact angle to incorporate the effect of change in contact area of the solid–liquid interface in rough surfaces. The results from the model agree with the results of previously conducted experimental studies with 20% accuracy. The correlation is primarily derived for microchannels and has also been extended to randomly roughened surfaces with micro/nanostructures.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Theoretical Model to Predict Pool Boiling Critical Heat Flux for Micro/Nano-Structured Surfaces
    typeJournal Paper
    journal volume144
    journal issue10
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4054899
    journal fristpage101601
    journal lastpage101601_9
    page9
    treeJournal of Heat Transfer:;2022:;volume( 144 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian