YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effects of Soret and Dufour Numbers on the Three-Dimensional MHD Flow of Micropolar Fluid Containing Gyrotactic Microorganisms Over a Bidirectional Stretching Sheet With Cattaneo–Christov Heat and Mass Flux Model

    Source: Journal of Heat Transfer:;2022:;volume( 144 ):;issue: 010::page 101201
    Author:
    Ramzan, Muhammad;Alduais, Fuad S.;Dawar, Abdullah;Saeed, Anwar;Kumam, Poom;Watthayu, Wiboonsak
    DOI: 10.1115/1.4054989
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Stretching flow problems have several real-world applications in engineering, biological, and industrial fields. The real-world applications of the stretching sheet flow problems are continuous cooling of fiber, manufacturing of rubber and plastics sheets, metal-working processes, crystal growth processes, drawing of the filaments through a quiescent fluid, and consideration of the liquid's films and many others. The present problem focuses on the study of heat and mass transmission phenomena of the magnetohydrodynamics flow of three-dimensional micropolar liquid over a bidirectional stretching surface. In the current analysis, the heat and mass transport mechanism are demonstrated by incorporating the Cattaneo–Christov heat and mass flux model. The micro-organisms are only used to stabilize suspended nanoparticles via bioconvection, which is caused by the combination of magnetic field and a buoyancy force. The current model is demonstrated in the system of higher order partial differential equations (PDEs), which are changed into nonlinear ordinary differential equations (ODEs) by the exploitation of appropriate similarity variables. For the analytical solution, the resulting nonlinear ODEs are simulated by employing the homotopy analysis scheme. The physical significance of velocities, microrotation, temperature, concentration, and micro-organism profiles of the fluid via various embedded parameters are calculated and discussed in a graphical form. The Nusselt number, Sherwood number and micro-organism density number are calculated via tables. Some major findings of the current problem are that the Nusselt number is weakened for the boosted estimation of radiation and thermal relaxation time parameter. The bioconvection Lewis number raised the micro-organism density number. The nanofluid microrotation profile is boosted with the augmentation of the microrotation parameter. The temperature of nanoliquid is lower for thermal relaxation time parameter and nanofluid concentration is lower the for solutal relaxation time parameter.
    • Download: (1.265Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effects of Soret and Dufour Numbers on the Three-Dimensional MHD Flow of Micropolar Fluid Containing Gyrotactic Microorganisms Over a Bidirectional Stretching Sheet With Cattaneo–Christov Heat and Mass Flux Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4288070
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorRamzan, Muhammad;Alduais, Fuad S.;Dawar, Abdullah;Saeed, Anwar;Kumam, Poom;Watthayu, Wiboonsak
    date accessioned2022-12-27T23:11:36Z
    date available2022-12-27T23:11:36Z
    date copyright8/18/2022 12:00:00 AM
    date issued2022
    identifier issn0022-1481
    identifier otherht_144_10_101201.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4288070
    description abstractStretching flow problems have several real-world applications in engineering, biological, and industrial fields. The real-world applications of the stretching sheet flow problems are continuous cooling of fiber, manufacturing of rubber and plastics sheets, metal-working processes, crystal growth processes, drawing of the filaments through a quiescent fluid, and consideration of the liquid's films and many others. The present problem focuses on the study of heat and mass transmission phenomena of the magnetohydrodynamics flow of three-dimensional micropolar liquid over a bidirectional stretching surface. In the current analysis, the heat and mass transport mechanism are demonstrated by incorporating the Cattaneo–Christov heat and mass flux model. The micro-organisms are only used to stabilize suspended nanoparticles via bioconvection, which is caused by the combination of magnetic field and a buoyancy force. The current model is demonstrated in the system of higher order partial differential equations (PDEs), which are changed into nonlinear ordinary differential equations (ODEs) by the exploitation of appropriate similarity variables. For the analytical solution, the resulting nonlinear ODEs are simulated by employing the homotopy analysis scheme. The physical significance of velocities, microrotation, temperature, concentration, and micro-organism profiles of the fluid via various embedded parameters are calculated and discussed in a graphical form. The Nusselt number, Sherwood number and micro-organism density number are calculated via tables. Some major findings of the current problem are that the Nusselt number is weakened for the boosted estimation of radiation and thermal relaxation time parameter. The bioconvection Lewis number raised the micro-organism density number. The nanofluid microrotation profile is boosted with the augmentation of the microrotation parameter. The temperature of nanoliquid is lower for thermal relaxation time parameter and nanofluid concentration is lower the for solutal relaxation time parameter.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffects of Soret and Dufour Numbers on the Three-Dimensional MHD Flow of Micropolar Fluid Containing Gyrotactic Microorganisms Over a Bidirectional Stretching Sheet With Cattaneo–Christov Heat and Mass Flux Model
    typeJournal Paper
    journal volume144
    journal issue10
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4054989
    journal fristpage101201
    journal lastpage101201_14
    page14
    treeJournal of Heat Transfer:;2022:;volume( 144 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian