YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Risk-Informed Bridge Optimal Maintenance Strategy Considering Target Service Life and User Cost at Project and Network Levels

    Source: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2022:;Volume ( 008 ):;issue: 004::page 04022050
    Author:
    Xu Han
    ,
    Dan M. Frangopol
    DOI: 10.1061/AJRUA6.0001263
    Publisher: ASCE
    Abstract: As the concept and methods of maintenance of infrastructure systems are receiving increasing attention, the optimal maintenance strategy for a group of structures is a promising research topic. Among the factors affecting the decision-making of optimal maintenance strategy for civil infrastructure systems, the target service life and user cost estimation approach are significant. Currently, user cost estimation at the project level is widely adopted, whereas the user cost estimation at the network level is in the development stage. This paper investigates the impact of several factors on the risk-informed optimal maintenance strategy for a bridge network under corrosion, including target service life, user cost estimation approach, and correlation among bridge safety margins. The novelty of this paper consists of considering the effects of these factors on the optimal maintenance strategy of bridge networks. These effects, which are crucial for adopting the optimal maintenance strategy, were not investigated in a detailed manner previously. Two different maintenance strategies are considered for the maintenance of corroded steel girders. The former is to conduct replacement with new carbon steel girders, and the latter is to use A709-50CR steel, where CR stands for corrosion resistant, a new type of steel with a chromium content similar to that of martensitic stainless steel, in replacement actions. Using an existing bridge network under a low life-cycle risk threshold, it is shown that replacement based on A709-50CR girders results in a reduced life-cycle network maintenance cost than replacement based on carbon steel girders. Also, the project-level approach to estimate user cost can lead to a substantial increase in the life-cycle network maintenance cost compared with the network-level approach.
    • Download: (1.018Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Risk-Informed Bridge Optimal Maintenance Strategy Considering Target Service Life and User Cost at Project and Network Levels

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4287923
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering

    Show full item record

    contributor authorXu Han
    contributor authorDan M. Frangopol
    date accessioned2022-12-27T20:45:05Z
    date available2022-12-27T20:45:05Z
    date issued2022/12/01
    identifier otherAJRUA6.0001263.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4287923
    description abstractAs the concept and methods of maintenance of infrastructure systems are receiving increasing attention, the optimal maintenance strategy for a group of structures is a promising research topic. Among the factors affecting the decision-making of optimal maintenance strategy for civil infrastructure systems, the target service life and user cost estimation approach are significant. Currently, user cost estimation at the project level is widely adopted, whereas the user cost estimation at the network level is in the development stage. This paper investigates the impact of several factors on the risk-informed optimal maintenance strategy for a bridge network under corrosion, including target service life, user cost estimation approach, and correlation among bridge safety margins. The novelty of this paper consists of considering the effects of these factors on the optimal maintenance strategy of bridge networks. These effects, which are crucial for adopting the optimal maintenance strategy, were not investigated in a detailed manner previously. Two different maintenance strategies are considered for the maintenance of corroded steel girders. The former is to conduct replacement with new carbon steel girders, and the latter is to use A709-50CR steel, where CR stands for corrosion resistant, a new type of steel with a chromium content similar to that of martensitic stainless steel, in replacement actions. Using an existing bridge network under a low life-cycle risk threshold, it is shown that replacement based on A709-50CR girders results in a reduced life-cycle network maintenance cost than replacement based on carbon steel girders. Also, the project-level approach to estimate user cost can lead to a substantial increase in the life-cycle network maintenance cost compared with the network-level approach.
    publisherASCE
    titleRisk-Informed Bridge Optimal Maintenance Strategy Considering Target Service Life and User Cost at Project and Network Levels
    typeJournal Article
    journal volume8
    journal issue4
    journal titleASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    identifier doi10.1061/AJRUA6.0001263
    journal fristpage04022050
    journal lastpage04022050_13
    page13
    treeASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2022:;Volume ( 008 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian