YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Enhancing Pullout Load Capacity of Helical Anchor in Clay with Adjusted Load Application Point under Inclined Loading Condition

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2022:;Volume ( 148 ):;issue: 010::page 04022075
    Author:
    Jiyeong Lee
    ,
    Junhwan Lee
    DOI: 10.1061/(ASCE)GT.1943-5606.0002870
    Publisher: ASCE
    Abstract: In this study, the effect of load application point (zp) on the load capacity (Qu) of helical anchors under inclined loading condition was investigated. For this purpose, coupled Eulerian-Lagrangian finite element analyses were performed for various configurations of helical anchor and load inclination angles (θ). The focus was on characterizing the optimum load application point that can most enhance the load capacity of helical anchors. Both inclined loading and load application point significantly affected the load capacity of the helical anchor. For the individual failure-mechanism case, the effect of θ on Qu was clearly beneficial in most cases, indicating that the individual configuration is more advantageous when a taut or catenary mooring type is adopted. The load capacity of the helical anchor increased as the load application point moved from the top to certain limit depth, below which the load capacity became reversely decreased with further increasing zp/L. The optimum loading depth was found at zp/L=0.625. The effect of zp on the pullout capacity was mainly controlled by the horizontal load component. Based on the results of this study, design equations for the load capacity of helical anchors with load application point are proposed.
    • Download: (3.038Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Enhancing Pullout Load Capacity of Helical Anchor in Clay with Adjusted Load Application Point under Inclined Loading Condition

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4287668
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorJiyeong Lee
    contributor authorJunhwan Lee
    date accessioned2022-12-27T20:37:09Z
    date available2022-12-27T20:37:09Z
    date issued2022/10/01
    identifier other(ASCE)GT.1943-5606.0002870.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4287668
    description abstractIn this study, the effect of load application point (zp) on the load capacity (Qu) of helical anchors under inclined loading condition was investigated. For this purpose, coupled Eulerian-Lagrangian finite element analyses were performed for various configurations of helical anchor and load inclination angles (θ). The focus was on characterizing the optimum load application point that can most enhance the load capacity of helical anchors. Both inclined loading and load application point significantly affected the load capacity of the helical anchor. For the individual failure-mechanism case, the effect of θ on Qu was clearly beneficial in most cases, indicating that the individual configuration is more advantageous when a taut or catenary mooring type is adopted. The load capacity of the helical anchor increased as the load application point moved from the top to certain limit depth, below which the load capacity became reversely decreased with further increasing zp/L. The optimum loading depth was found at zp/L=0.625. The effect of zp on the pullout capacity was mainly controlled by the horizontal load component. Based on the results of this study, design equations for the load capacity of helical anchors with load application point are proposed.
    publisherASCE
    titleEnhancing Pullout Load Capacity of Helical Anchor in Clay with Adjusted Load Application Point under Inclined Loading Condition
    typeJournal Article
    journal volume148
    journal issue10
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0002870
    journal fristpage04022075
    journal lastpage04022075_14
    page14
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2022:;Volume ( 148 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian