Coupling of ASTEC V2.1 and RASCAL 4.3 Codes to Evaluate the Source Term and the Radiological Consequences of a Loss-of-Cooling Accident at a Spent Fuel PoolSource: Journal of Nuclear Engineering and Radiation Science:;2022:;volume( 008 ):;issue: 004::page 41602-1DOI: 10.1115/1.4054514Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: This paper deals with a general methodology to evaluate the Source Term (ST) and the Radiological Consequences (RC) of a hypothetical Severe Accident (SA) at a Fukushima-like Spent Fuel Pool (SFP) by coupling ASTEC 2.1 and RASCAL 4.3 SA and consequence projections (CP) codes, respectively. The methodology consists of the following sequential steps: the ST provided by a prior simulation performed by ASTEC V2.1 code was used as input to RASCAL 4.3 code to make a RC analysis. This approach was developed as a preparatory study for the Management and Uncertainties in Severe Accident (MUSA) H2020 European Project, coordinated by CIEMAT, where the ENEA's Nuclear Installations safety laboratory is committed to performing an analysis on a Fukushima-like SFP with the aim to apply innovative management of SFP accidents (WP6) to mitigate the RC of the accident itself. To perform the RC studies that could have an impact on Italy, a Fukushima-like SFP was assumed located in one of the Italian cross-border NPP sites. The weather data adopted are both standard and real hourly meteorological data taken from more than one geographical location. The results of the RC for 96 h of ST release in a range of 160 km from the emission point are reported in terms of Total Effective Dose Equivalent (TEDE), Thyroid dose, and Cs-137 total ground deposition. The mitigating effect on ST and on RC of the cooling spray system (CSS) actuated with several pH values (i.e., 4,7,10) was also investigated.
|
Show full item record
contributor author | Guglielmelli | |
contributor author | Antonio;Ederli | |
contributor author | Stefano;Mascari | |
contributor author | Fulvio;Rocchi | |
contributor author | Federico;Maccari | |
contributor author | Pietro | |
date accessioned | 2022-08-18T13:07:57Z | |
date available | 2022-08-18T13:07:57Z | |
date copyright | 6/24/2022 12:00:00 AM | |
date issued | 2022 | |
identifier issn | 2332-8983 | |
identifier other | ners_008_04_041602.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4287487 | |
description abstract | This paper deals with a general methodology to evaluate the Source Term (ST) and the Radiological Consequences (RC) of a hypothetical Severe Accident (SA) at a Fukushima-like Spent Fuel Pool (SFP) by coupling ASTEC 2.1 and RASCAL 4.3 SA and consequence projections (CP) codes, respectively. The methodology consists of the following sequential steps: the ST provided by a prior simulation performed by ASTEC V2.1 code was used as input to RASCAL 4.3 code to make a RC analysis. This approach was developed as a preparatory study for the Management and Uncertainties in Severe Accident (MUSA) H2020 European Project, coordinated by CIEMAT, where the ENEA's Nuclear Installations safety laboratory is committed to performing an analysis on a Fukushima-like SFP with the aim to apply innovative management of SFP accidents (WP6) to mitigate the RC of the accident itself. To perform the RC studies that could have an impact on Italy, a Fukushima-like SFP was assumed located in one of the Italian cross-border NPP sites. The weather data adopted are both standard and real hourly meteorological data taken from more than one geographical location. The results of the RC for 96 h of ST release in a range of 160 km from the emission point are reported in terms of Total Effective Dose Equivalent (TEDE), Thyroid dose, and Cs-137 total ground deposition. The mitigating effect on ST and on RC of the cooling spray system (CSS) actuated with several pH values (i.e., 4,7,10) was also investigated. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Coupling of ASTEC V2.1 and RASCAL 4.3 Codes to Evaluate the Source Term and the Radiological Consequences of a Loss-of-Cooling Accident at a Spent Fuel Pool | |
type | Journal Paper | |
journal volume | 8 | |
journal issue | 4 | |
journal title | Journal of Nuclear Engineering and Radiation Science | |
identifier doi | 10.1115/1.4054514 | |
journal fristpage | 41602-1 | |
journal lastpage | 41602-12 | |
page | 12 | |
tree | Journal of Nuclear Engineering and Radiation Science:;2022:;volume( 008 ):;issue: 004 | |
contenttype | Fulltext |