YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Uncertainty Analysis and Sensitivity Estimation on an Artillery External Ballistic System

    Source: Journal of Mechanical Design:;2022:;volume( 144 ):;issue: 010::page 101702-1
    Author:
    Tong
    ,
    Nichen;Liu
    ,
    Qiming;Han
    ,
    Xu;Wu
    ,
    Xingfu;Zhang
    ,
    Zheyi
    DOI: 10.1115/1.4054641
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In the design of artillery external ballistics, sensitivity analysis can effectively quantify the influence of multi-source uncertain parameters on the dispersion of projectile landing points to improve the precise attack ability of artillery. However, for a complicated artillery external ballistic system containing multiple inputs and outputs, its mapping relationships are not definite under uncertainty and it is difficult to estimate a comprehensive sensitivity index due to involving the calculation of high dimensional integral. Therefore, a sensitivity analysis method based on the combination of variance and covariance decomposition with the approximate high dimensional model representation (AHDMR) is proposed to measure the influence of muzzle state parameters, projectile characteristic parameters, etc. on projectile landing points under uncertainty in this paper. First, we establish the numerical simulation model of artillery external ballistics by combing the external ballistic theory and Runge–Kutta algorithm to acquire the mapping relationships between the uncertain input parameters and the dispersion of projectile landing points and implement uncertainty analysis under different uncertainty levels (UL) and distributions. Then, with the use of a set of orthogonal polynomials for uniform and Gaussian distribution, respectively, the high dimensional model representation of the mapping relationship is approximately expressed and the compressive sensitivity indices can be effectively estimated based on the Monte Carlo simulation. Moreover, the comparison results of two numerical examples indicate the proposed sensitivity analysis method is accurate and practical. Finally, through the method, the importance rankings of multi-uncertain parameters on projectile landing points for two distributions are effectively quantified under the UL = [0.01, 0.02, 0.03, 0.04, 0.05].
    • Download: (1.184Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Uncertainty Analysis and Sensitivity Estimation on an Artillery External Ballistic System

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4287312
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorTong
    contributor authorNichen;Liu
    contributor authorQiming;Han
    contributor authorXu;Wu
    contributor authorXingfu;Zhang
    contributor authorZheyi
    date accessioned2022-08-18T13:02:14Z
    date available2022-08-18T13:02:14Z
    date copyright6/30/2022 12:00:00 AM
    date issued2022
    identifier issn1050-0472
    identifier othermd_144_10_101702.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4287312
    description abstractIn the design of artillery external ballistics, sensitivity analysis can effectively quantify the influence of multi-source uncertain parameters on the dispersion of projectile landing points to improve the precise attack ability of artillery. However, for a complicated artillery external ballistic system containing multiple inputs and outputs, its mapping relationships are not definite under uncertainty and it is difficult to estimate a comprehensive sensitivity index due to involving the calculation of high dimensional integral. Therefore, a sensitivity analysis method based on the combination of variance and covariance decomposition with the approximate high dimensional model representation (AHDMR) is proposed to measure the influence of muzzle state parameters, projectile characteristic parameters, etc. on projectile landing points under uncertainty in this paper. First, we establish the numerical simulation model of artillery external ballistics by combing the external ballistic theory and Runge–Kutta algorithm to acquire the mapping relationships between the uncertain input parameters and the dispersion of projectile landing points and implement uncertainty analysis under different uncertainty levels (UL) and distributions. Then, with the use of a set of orthogonal polynomials for uniform and Gaussian distribution, respectively, the high dimensional model representation of the mapping relationship is approximately expressed and the compressive sensitivity indices can be effectively estimated based on the Monte Carlo simulation. Moreover, the comparison results of two numerical examples indicate the proposed sensitivity analysis method is accurate and practical. Finally, through the method, the importance rankings of multi-uncertain parameters on projectile landing points for two distributions are effectively quantified under the UL = [0.01, 0.02, 0.03, 0.04, 0.05].
    publisherThe American Society of Mechanical Engineers (ASME)
    titleUncertainty Analysis and Sensitivity Estimation on an Artillery External Ballistic System
    typeJournal Paper
    journal volume144
    journal issue10
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.4054641
    journal fristpage101702-1
    journal lastpage101702-13
    page13
    treeJournal of Mechanical Design:;2022:;volume( 144 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian