YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Study of a Novel Twin-Nozzle Configuration for Reacting Jet in Hot Crossflow

    Source: Journal of Energy Resources Technology:;2022:;volume( 144 ):;issue: 009::page 92105-1
    Author:
    Wang
    ,
    Zhen;Wang
    ,
    Yayao;Liu
    ,
    Xunchen
    DOI: 10.1115/1.4053646
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Advanced gas turbine adopts axially staged combustion to achieve the goal of increasing turbine inlet temperature while limiting NOx emissions. The premixing effect of secondary fuel injection has a significant influence on secondary combustion organization and flame-dynamic characteristics. In this paper, we proposed a novel twin-nozzle configuration for secondary fuel injection. Secondary fuel is injected from the front nozzle, and air is injected from the rear nozzle. Operation condition studied includes the diameter (d) of front and rear nozzle from 1 mm to 3 mm, jet Reynolds number from 1900 to 5700, the jet spacing L ranges from 2d to 4d, and the equivalence ratio of primary stage from 0.72 to 0.59. This flexible configuration controls the injection of fuel and air separately and allows fully lifted flame front organization, which is crucial for fuel/air mixing and NOx control. Using high-speed CH* imaging, the effects of primary stage equivalence ratio, nozzle diameter, and rear air injection ratio on the dynamical characteristics are investigated. We discussed the flame propagation mechanism, flame base pulsation frequency, ignition delay distance, and heat release distribution. We found that when the jet Reynolds number is reduced from 5700 to 1900, the flame pulsation frequency rises from 176 Hz to 586 Hz. When the rear air injection ratio increases from 0 to 3, the pulsation frequency decreases from 586 Hz to 88 Hz, the flame lift-off height increases, and the ignition delay distance decreases.
    • Download: (1.290Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Study of a Novel Twin-Nozzle Configuration for Reacting Jet in Hot Crossflow

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4287273
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorWang
    contributor authorZhen;Wang
    contributor authorYayao;Liu
    contributor authorXunchen
    date accessioned2022-08-18T13:00:56Z
    date available2022-08-18T13:00:56Z
    date copyright2/15/2022 12:00:00 AM
    date issued2022
    identifier issn0195-0738
    identifier otherjert_144_9_092105.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4287273
    description abstractAdvanced gas turbine adopts axially staged combustion to achieve the goal of increasing turbine inlet temperature while limiting NOx emissions. The premixing effect of secondary fuel injection has a significant influence on secondary combustion organization and flame-dynamic characteristics. In this paper, we proposed a novel twin-nozzle configuration for secondary fuel injection. Secondary fuel is injected from the front nozzle, and air is injected from the rear nozzle. Operation condition studied includes the diameter (d) of front and rear nozzle from 1 mm to 3 mm, jet Reynolds number from 1900 to 5700, the jet spacing L ranges from 2d to 4d, and the equivalence ratio of primary stage from 0.72 to 0.59. This flexible configuration controls the injection of fuel and air separately and allows fully lifted flame front organization, which is crucial for fuel/air mixing and NOx control. Using high-speed CH* imaging, the effects of primary stage equivalence ratio, nozzle diameter, and rear air injection ratio on the dynamical characteristics are investigated. We discussed the flame propagation mechanism, flame base pulsation frequency, ignition delay distance, and heat release distribution. We found that when the jet Reynolds number is reduced from 5700 to 1900, the flame pulsation frequency rises from 176 Hz to 586 Hz. When the rear air injection ratio increases from 0 to 3, the pulsation frequency decreases from 586 Hz to 88 Hz, the flame lift-off height increases, and the ignition delay distance decreases.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExperimental Study of a Novel Twin-Nozzle Configuration for Reacting Jet in Hot Crossflow
    typeJournal Paper
    journal volume144
    journal issue9
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4053646
    journal fristpage92105-1
    journal lastpage92105-10
    page10
    treeJournal of Energy Resources Technology:;2022:;volume( 144 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian