YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Development and Analysis of an Integrated Mild/Partial Gasification Combined Cycle

    Source: Journal of Energy Resources Technology:;2022:;volume( 144 ):;issue: 012::page 122102-1
    Author:
    Wang
    ,
    Ting;Long
    ,
    Henry A.
    ,
    III
    DOI: 10.1115/1.4054189
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Around 50% of the world’s electrical power supply comes from the Rankine cycle, and the majority of existing Rankine cycle plants are driven by coal. Given how unattractive coal is as an energy resource in spite of its high energy content, it becomes necessary to find a way to utilize coal in a cleaner and more efficient manner. Designed as a potential retrofit option for existing Rankine cycle plants, the integrated mild/partial gasification combined (IMPGC) cycle is an attractive concept in cycle design that can greatly increase the efficiency of coal-based power plants, particularly for retrofitting an old Rankine cycle plant. Compared with the integrated gasification combined cycle (IGCC), IMPGC uses mild gasification to purposefully leave most of the volatile matters within the feedstock intact (hence, yielding more chemical energy) compared with full gasification and uses partial gasification to leave some of the remaining char un-gasified compared with complete gasification. The larger hydrocarbons leftover from the mild gasification process grant the resulting syngas a higher volumetric heating value, leading to a more efficient overall cycle performance. This is made possible due to the invention of a warm-gas cleanup process invented by the Research Triangle Institute (RTI), called the high-temperature desulfurization process (HTDP), which was recently commercialized. The leftover char can then be burned in a conventional boiler to boost the steam output of the bottom cycle, further increasing the efficiency of the plant up to 47.9% (based on lower heating value, or LHV). This paper will first analyze the individual concepts used to create the baseline IMPGC model, including the mild and partial gasification processes themselves, the warm-gas cleanup system, and the integration of the boiler with the heat recovery steam generator (HRSG). This baseline will then be compared with four other common types of power plants, including subcritical and ultra-supercritical (USC) Rankine cycles, IGCC, and natural gas. The results show that IMPGC consistently outperforms all other forms of coal-based power. IMPGC is more efficient than the standard subcritical Rankine cycle by nine percentage points, more than a USC Rankine cycle by nearly four points, and more than IGCC by seven points.
    • Download: (2.310Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Development and Analysis of an Integrated Mild/Partial Gasification Combined Cycle

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4287245
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorWang
    contributor authorTing;Long
    contributor authorHenry A.
    contributor authorIII
    date accessioned2022-08-18T13:00:05Z
    date available2022-08-18T13:00:05Z
    date copyright6/20/2022 12:00:00 AM
    date issued2022
    identifier issn0195-0738
    identifier otherjert_144_12_122102.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4287245
    description abstractAround 50% of the world’s electrical power supply comes from the Rankine cycle, and the majority of existing Rankine cycle plants are driven by coal. Given how unattractive coal is as an energy resource in spite of its high energy content, it becomes necessary to find a way to utilize coal in a cleaner and more efficient manner. Designed as a potential retrofit option for existing Rankine cycle plants, the integrated mild/partial gasification combined (IMPGC) cycle is an attractive concept in cycle design that can greatly increase the efficiency of coal-based power plants, particularly for retrofitting an old Rankine cycle plant. Compared with the integrated gasification combined cycle (IGCC), IMPGC uses mild gasification to purposefully leave most of the volatile matters within the feedstock intact (hence, yielding more chemical energy) compared with full gasification and uses partial gasification to leave some of the remaining char un-gasified compared with complete gasification. The larger hydrocarbons leftover from the mild gasification process grant the resulting syngas a higher volumetric heating value, leading to a more efficient overall cycle performance. This is made possible due to the invention of a warm-gas cleanup process invented by the Research Triangle Institute (RTI), called the high-temperature desulfurization process (HTDP), which was recently commercialized. The leftover char can then be burned in a conventional boiler to boost the steam output of the bottom cycle, further increasing the efficiency of the plant up to 47.9% (based on lower heating value, or LHV). This paper will first analyze the individual concepts used to create the baseline IMPGC model, including the mild and partial gasification processes themselves, the warm-gas cleanup system, and the integration of the boiler with the heat recovery steam generator (HRSG). This baseline will then be compared with four other common types of power plants, including subcritical and ultra-supercritical (USC) Rankine cycles, IGCC, and natural gas. The results show that IMPGC consistently outperforms all other forms of coal-based power. IMPGC is more efficient than the standard subcritical Rankine cycle by nine percentage points, more than a USC Rankine cycle by nearly four points, and more than IGCC by seven points.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDevelopment and Analysis of an Integrated Mild/Partial Gasification Combined Cycle
    typeJournal Paper
    journal volume144
    journal issue12
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4054189
    journal fristpage122102-1
    journal lastpage122102-18
    page18
    treeJournal of Energy Resources Technology:;2022:;volume( 144 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian