YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Electrochemical Energy Conversion and Storage
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Electrochemical Energy Conversion and Storage
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Computational Elucidation of Mechanical Degradation in NMC Cathodes: Impact on Cell Performance

    Source: Journal of Electrochemical Energy Conversion and Storage:;2022:;volume( 019 ):;issue: 004::page 41007-1
    Author:
    Barai
    ,
    Pallab
    DOI: 10.1115/1.4054782
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Next-generation lithium ion batteries are expected to demonstrate superior energy and power density with longer cycle life for successful electrification of the automobile, aviation, and marine industries. Adoption of lithium metal anodes with solid electrolytes can help to achieve that goal given that the dendrite-related issues are solved eventually. Another possibility is to use Ni-rich high-capacity NMC cathode materials with liquid and/or solid electrolytes, which presently experiences rapid capacity fade while charged to higher voltages. Several mechanical and chemical degradation mechanisms are active within these NMC-based cathode particles. Recent experimental research activities attempted to correlate the mechanical damage with the capacity fade experienced by Ni-rich LiNixMnyCozO2 (x+y+z = 1) (NMC) cathodes. A computational framework is developed in this study capable of quantifying the evolution of inter primary particle and cathode/electrolyte interfacial fracture experienced by the poly- and single-crystalline NMC cathodes during charge/discharge operation. Influences of mechanical degradation on the overall cell capacity, while operating with liquid and/or solid electrolytes, are successfully characterized. Decreasing the size of the cathode primary particles, or the size of the single-crystalline cathodes, can mitigate the overall mechanical degradation, and subsequent capacity fade, experienced by NMC cathodes. The developed theoretical methodology can help the engineers and scientists to better understand the mechanical degradation mechanism prevalent in Ni-rich NMC cathodes and build superior lithium ion-based energy storage devices for the application in next-generation devices.
    • Download: (1.504Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Computational Elucidation of Mechanical Degradation in NMC Cathodes: Impact on Cell Performance

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4287012
    Collections
    • Journal of Electrochemical Energy Conversion and Storage

    Show full item record

    contributor authorBarai
    contributor authorPallab
    date accessioned2022-08-18T12:52:29Z
    date available2022-08-18T12:52:29Z
    date copyright7/1/2022 12:00:00 AM
    date issued2022
    identifier issn2381-6872
    identifier otherjeecs_19_4_041007.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4287012
    description abstractNext-generation lithium ion batteries are expected to demonstrate superior energy and power density with longer cycle life for successful electrification of the automobile, aviation, and marine industries. Adoption of lithium metal anodes with solid electrolytes can help to achieve that goal given that the dendrite-related issues are solved eventually. Another possibility is to use Ni-rich high-capacity NMC cathode materials with liquid and/or solid electrolytes, which presently experiences rapid capacity fade while charged to higher voltages. Several mechanical and chemical degradation mechanisms are active within these NMC-based cathode particles. Recent experimental research activities attempted to correlate the mechanical damage with the capacity fade experienced by Ni-rich LiNixMnyCozO2 (x+y+z = 1) (NMC) cathodes. A computational framework is developed in this study capable of quantifying the evolution of inter primary particle and cathode/electrolyte interfacial fracture experienced by the poly- and single-crystalline NMC cathodes during charge/discharge operation. Influences of mechanical degradation on the overall cell capacity, while operating with liquid and/or solid electrolytes, are successfully characterized. Decreasing the size of the cathode primary particles, or the size of the single-crystalline cathodes, can mitigate the overall mechanical degradation, and subsequent capacity fade, experienced by NMC cathodes. The developed theoretical methodology can help the engineers and scientists to better understand the mechanical degradation mechanism prevalent in Ni-rich NMC cathodes and build superior lithium ion-based energy storage devices for the application in next-generation devices.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleComputational Elucidation of Mechanical Degradation in NMC Cathodes: Impact on Cell Performance
    typeJournal Paper
    journal volume19
    journal issue4
    journal titleJournal of Electrochemical Energy Conversion and Storage
    identifier doi10.1115/1.4054782
    journal fristpage41007-1
    journal lastpage41007-15
    page15
    treeJournal of Electrochemical Energy Conversion and Storage:;2022:;volume( 019 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian