YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Sensitivity Analysis of Tsunami Evacuation Risk with Respect to Epistemic Uncertainty

    Source: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2022:;Volume ( 008 ):;issue: 003::page 04022037
    Author:
    Zhenqiang Wang
    ,
    Gaofeng Jia
    DOI: 10.1061/AJRUA6.0001257
    Publisher: ASCE
    Abstract: To assess tsunami evacuation risk accurately in order to guide effective evacuation planning, various uncertainties (including the aleatory and epistemic uncertainties) associated with the evacuation process need to be quantified properly. Reducing the epistemic uncertainties associated with the evacuation process (e.g., through data collection) can facilitate more-accurate estimation of tsunami evacuation risk. To guide such reduction or prioritize data collection, this study performed sensitivity analysis of tsunami evacuation risk (i.e., risk sensitivity analysis) with respect to epistemic uncertainty. An agent-based tsunami evacuation model was used to simulate the evacuation within a simulation-based risk assessment framework, which incorporated various uncertainties associated with the evacuation process. The aleatory uncertainty in the input random variable was quantified by probability distribution models, and the epistemic uncertainties were quantified by distribution parameters that also were modeled by probability distributions. Sensitivity analysis of tsunami evacuation risk with respect to the epistemic uncertainty was performed to evaluate the impact of various epistemic uncertainties on the variability of the evacuation risk and identify those that have relatively large impacts. An augmented sample-based approach was used to calculate efficiently the variance-based sensitivity indexes (i.e., Sobol’ indexes) for all distribution parameters. The sensitivity information can be used to prioritize the data collection for effective epistemic uncertainty reduction, and for a more accurate risk assessment to support more-effective evacuation planning. As an illustrative example, sensitivity analysis of tsunami evacuation risk of Seaside, Oregon with respect to epistemic uncertainty was performed under different risk measures.
    • Download: (2.482Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Sensitivity Analysis of Tsunami Evacuation Risk with Respect to Epistemic Uncertainty

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4286828
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering

    Show full item record

    contributor authorZhenqiang Wang
    contributor authorGaofeng Jia
    date accessioned2022-08-18T12:34:13Z
    date available2022-08-18T12:34:13Z
    date issued2022/07/05
    identifier otherAJRUA6.0001257.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4286828
    description abstractTo assess tsunami evacuation risk accurately in order to guide effective evacuation planning, various uncertainties (including the aleatory and epistemic uncertainties) associated with the evacuation process need to be quantified properly. Reducing the epistemic uncertainties associated with the evacuation process (e.g., through data collection) can facilitate more-accurate estimation of tsunami evacuation risk. To guide such reduction or prioritize data collection, this study performed sensitivity analysis of tsunami evacuation risk (i.e., risk sensitivity analysis) with respect to epistemic uncertainty. An agent-based tsunami evacuation model was used to simulate the evacuation within a simulation-based risk assessment framework, which incorporated various uncertainties associated with the evacuation process. The aleatory uncertainty in the input random variable was quantified by probability distribution models, and the epistemic uncertainties were quantified by distribution parameters that also were modeled by probability distributions. Sensitivity analysis of tsunami evacuation risk with respect to the epistemic uncertainty was performed to evaluate the impact of various epistemic uncertainties on the variability of the evacuation risk and identify those that have relatively large impacts. An augmented sample-based approach was used to calculate efficiently the variance-based sensitivity indexes (i.e., Sobol’ indexes) for all distribution parameters. The sensitivity information can be used to prioritize the data collection for effective epistemic uncertainty reduction, and for a more accurate risk assessment to support more-effective evacuation planning. As an illustrative example, sensitivity analysis of tsunami evacuation risk of Seaside, Oregon with respect to epistemic uncertainty was performed under different risk measures.
    publisherASCE
    titleSensitivity Analysis of Tsunami Evacuation Risk with Respect to Epistemic Uncertainty
    typeJournal Article
    journal volume8
    journal issue3
    journal titleASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    identifier doi10.1061/AJRUA6.0001257
    journal fristpage04022037
    journal lastpage04022037-13
    page13
    treeASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2022:;Volume ( 008 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian