YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Lateral Displacements of Geosynthetic-Reinforced Soil Walls in a Tiered Configuration

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2022:;Volume ( 148 ):;issue: 009::page 04022066
    Author:
    Shan Gao
    ,
    Chengzhi Xiao
    ,
    Jie Han
    ,
    Zihan Wang
    DOI: 10.1061/(ASCE)GT.1943-5606.0002853
    Publisher: ASCE
    Abstract: Current design methods for geosynthetic-reinforced soil (GRS) walls in a tiered configuration mostly focus on wall stability by determining required tensile strength and layout of reinforcement. A finite difference numerical model was firstly verified with the available field measured results of a single GRS wall and model test results of a two-tiered GRS wall in the literature, and then used to analyze lateral displacements of multitiered GRS walls with modular concrete block facing. A parametric study was conducted to evaluate the effect of backfill properties (friction angle and cohesion), elastic modulus of foundation soil, reinforcement parameters (stiffness, spacing, and length), and tiered wall geometry (offset distance, number of tiers, and height ratio of adjacent tiers), on facing lateral displacements of multitiered GRS walls. The numerical results showed that an increase of the shear strength of the backfill by its friction angle or cohesion reduced the wall lateral displacement. An increase in the reinforcement length of the upper tier in the two-tiered wall from 0.35 times to 0.60 times the total wall height resulted in approximately 21.3% and 34.7% reduction in the maximum lateral displacements for lower and upper tiers, respectively. The reinforcement stiffness and spacing had a significant impact on facing lateral displacements whereas the ratio of reinforcement stiffness to spacing had a negligible influence. An increase of the offset distance or a reduction of the number of tiers remarkably reduced wall facing lateral displacements. An analytical solution was developed for estimating the lateral displacement of a two-tiered GRS wall and compared well with the numerical results.
    • Download: (2.193Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Lateral Displacements of Geosynthetic-Reinforced Soil Walls in a Tiered Configuration

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4286379
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorShan Gao
    contributor authorChengzhi Xiao
    contributor authorJie Han
    contributor authorZihan Wang
    date accessioned2022-08-18T12:17:59Z
    date available2022-08-18T12:17:59Z
    date issued2022/06/17
    identifier other%28ASCE%29GT.1943-5606.0002853.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4286379
    description abstractCurrent design methods for geosynthetic-reinforced soil (GRS) walls in a tiered configuration mostly focus on wall stability by determining required tensile strength and layout of reinforcement. A finite difference numerical model was firstly verified with the available field measured results of a single GRS wall and model test results of a two-tiered GRS wall in the literature, and then used to analyze lateral displacements of multitiered GRS walls with modular concrete block facing. A parametric study was conducted to evaluate the effect of backfill properties (friction angle and cohesion), elastic modulus of foundation soil, reinforcement parameters (stiffness, spacing, and length), and tiered wall geometry (offset distance, number of tiers, and height ratio of adjacent tiers), on facing lateral displacements of multitiered GRS walls. The numerical results showed that an increase of the shear strength of the backfill by its friction angle or cohesion reduced the wall lateral displacement. An increase in the reinforcement length of the upper tier in the two-tiered wall from 0.35 times to 0.60 times the total wall height resulted in approximately 21.3% and 34.7% reduction in the maximum lateral displacements for lower and upper tiers, respectively. The reinforcement stiffness and spacing had a significant impact on facing lateral displacements whereas the ratio of reinforcement stiffness to spacing had a negligible influence. An increase of the offset distance or a reduction of the number of tiers remarkably reduced wall facing lateral displacements. An analytical solution was developed for estimating the lateral displacement of a two-tiered GRS wall and compared well with the numerical results.
    publisherASCE
    titleLateral Displacements of Geosynthetic-Reinforced Soil Walls in a Tiered Configuration
    typeJournal Article
    journal volume148
    journal issue9
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0002853
    journal fristpage04022066
    journal lastpage04022066-20
    page20
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2022:;Volume ( 148 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian