YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Soil–Foundation–Structure Interaction of Inelastic Structural Systems on Unsaturated Soil Layers

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2022:;Volume ( 148 ):;issue: 007::page 04022049
    Author:
    Matthew M. Turner
    ,
    Majid Ghayoomi
    ,
    Kyohei Ueda
    ,
    Ryosuke Uzuoka
    DOI: 10.1061/(ASCE)GT.1943-5606.0002819
    Publisher: ASCE
    Abstract: Recently, progress has been made toward understanding the seismic response of structures placed on unsaturated soil layers. A missing link, however, involves the influence and assessment of the underlying soil saturation conditions on the expected superstructure seismic demands. Simplified soil–structure interaction procedures that can be used to predict superstructure seismic demands have not been explicitly extended to incorporate the influence of unsaturated soil on the system response. In this paper, results from a series of six centrifuge tests are compared. In each test, an inelastic single-degree-of-freedom physical model was shallowly embedded in a sandy silt with a distinct water table elevation or a completely dry soil condition. The soil-structure system was subjected to a series of earthquake motions. The response of the system was evaluated to assess the influence of the soil saturation condition on the seismic response. Specifically, a conventional analytical procedure for predicting the influence of inertial interaction on the seismic response of the structure was extended to consider the water table elevation and underlying soil saturation condition and evaluated for its reliability. Analytical flexible-base modal parameters were compared with those determined from experimental results to judge the potential of the analytical procedure to be used in practice. Experimental results suggest that as the water table elevation was lowered from the fully saturated condition, both the flexible-base system period and damping ratio reduced. Therefore, the system behaved stiffer in the unsaturated soil compared with the dry and fully saturated conditions. The stiffer response reduced the seismically induced foundation settlements and rotations but amplified superstructure seismic demands in the form of accelerations, flexural drifts, and bending strains.
    • Download: (3.225Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Soil–Foundation–Structure Interaction of Inelastic Structural Systems on Unsaturated Soil Layers

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4286358
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorMatthew M. Turner
    contributor authorMajid Ghayoomi
    contributor authorKyohei Ueda
    contributor authorRyosuke Uzuoka
    date accessioned2022-08-18T12:17:18Z
    date available2022-08-18T12:17:18Z
    date issued2022/04/28
    identifier other%28ASCE%29GT.1943-5606.0002819.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4286358
    description abstractRecently, progress has been made toward understanding the seismic response of structures placed on unsaturated soil layers. A missing link, however, involves the influence and assessment of the underlying soil saturation conditions on the expected superstructure seismic demands. Simplified soil–structure interaction procedures that can be used to predict superstructure seismic demands have not been explicitly extended to incorporate the influence of unsaturated soil on the system response. In this paper, results from a series of six centrifuge tests are compared. In each test, an inelastic single-degree-of-freedom physical model was shallowly embedded in a sandy silt with a distinct water table elevation or a completely dry soil condition. The soil-structure system was subjected to a series of earthquake motions. The response of the system was evaluated to assess the influence of the soil saturation condition on the seismic response. Specifically, a conventional analytical procedure for predicting the influence of inertial interaction on the seismic response of the structure was extended to consider the water table elevation and underlying soil saturation condition and evaluated for its reliability. Analytical flexible-base modal parameters were compared with those determined from experimental results to judge the potential of the analytical procedure to be used in practice. Experimental results suggest that as the water table elevation was lowered from the fully saturated condition, both the flexible-base system period and damping ratio reduced. Therefore, the system behaved stiffer in the unsaturated soil compared with the dry and fully saturated conditions. The stiffer response reduced the seismically induced foundation settlements and rotations but amplified superstructure seismic demands in the form of accelerations, flexural drifts, and bending strains.
    publisherASCE
    titleSoil–Foundation–Structure Interaction of Inelastic Structural Systems on Unsaturated Soil Layers
    typeJournal Article
    journal volume148
    journal issue7
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0002819
    journal fristpage04022049
    journal lastpage04022049-15
    page15
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2022:;Volume ( 148 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian