YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental and Analytical Study on Shear Performance of Embedded Through-Section GFRP-Strengthened RC Beams

    Source: Journal of Composites for Construction:;2022:;Volume ( 026 ):;issue: 005::page 04022046
    Author:
    Linh Van Hong Bui
    ,
    Chanakan Klippathum
    ,
    Tosporn Prasertsri
    ,
    Pitcha Jongvivatsakul
    ,
    Boonchai Stitmannaithum
    DOI: 10.1061/(ASCE)CC.1943-5614.0001235
    Publisher: ASCE
    Abstract: The structural performance of reinforced concrete (RC) beams strengthened in shear with embedded through-section (ETS) glass fiber-reinforced polymer (GFRP) bars is experimentally and analytically investigated. Three-point bending tests are performed. The investigated parameters include the number of existing steel stirrups (ρsw = 0.28%), concrete compressive strength (fc′ = 27 and 43 MPa), shear span-to-effective depth ratio (a/d = 2.4, 3.6, and 4.8), anchorage presence (with and without anchorage), and anchorage properties (steel and GFRP anchorage systems, as well as the anchorage length). The results indicate that the shear capacity and stiffness of the beams are enhanced by applying ETS-GFRP, increasing concrete strength, and decreasing shear span-to-effective depth ratio. The ETS-GFRP-strengthened beams exhibit a more ductile failure mode than the unstrengthened beam owing to concrete crushing in loading areas. The beam stiffness depends significantly on the anchorage presence and properties, and the beam shear capacities differ considerably for different anchorage systems. Anchorage with four steel nuts or two GFRP nuts at the ETS bar ends provides the highest shear resistance and stiffness for the ETS-strengthened beams. The results of this study suggest that the details and configuration of the anchorage system should be carefully considered for the development of unanimous specifications. Additionally, previously proposed shear models can be used to conservatively analyze test results with sufficient accuracy. The newly developed model for estimation of the shear strengths of ETS-GFRP-strengthened beams and the effective strains in ETS-GFRP bars agrees well with the test data.
    • Download: (5.694Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental and Analytical Study on Shear Performance of Embedded Through-Section GFRP-Strengthened RC Beams

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4286089
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorLinh Van Hong Bui
    contributor authorChanakan Klippathum
    contributor authorTosporn Prasertsri
    contributor authorPitcha Jongvivatsakul
    contributor authorBoonchai Stitmannaithum
    date accessioned2022-08-18T12:09:02Z
    date available2022-08-18T12:09:02Z
    date issued2022/06/23
    identifier other%28ASCE%29CC.1943-5614.0001235.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4286089
    description abstractThe structural performance of reinforced concrete (RC) beams strengthened in shear with embedded through-section (ETS) glass fiber-reinforced polymer (GFRP) bars is experimentally and analytically investigated. Three-point bending tests are performed. The investigated parameters include the number of existing steel stirrups (ρsw = 0.28%), concrete compressive strength (fc′ = 27 and 43 MPa), shear span-to-effective depth ratio (a/d = 2.4, 3.6, and 4.8), anchorage presence (with and without anchorage), and anchorage properties (steel and GFRP anchorage systems, as well as the anchorage length). The results indicate that the shear capacity and stiffness of the beams are enhanced by applying ETS-GFRP, increasing concrete strength, and decreasing shear span-to-effective depth ratio. The ETS-GFRP-strengthened beams exhibit a more ductile failure mode than the unstrengthened beam owing to concrete crushing in loading areas. The beam stiffness depends significantly on the anchorage presence and properties, and the beam shear capacities differ considerably for different anchorage systems. Anchorage with four steel nuts or two GFRP nuts at the ETS bar ends provides the highest shear resistance and stiffness for the ETS-strengthened beams. The results of this study suggest that the details and configuration of the anchorage system should be carefully considered for the development of unanimous specifications. Additionally, previously proposed shear models can be used to conservatively analyze test results with sufficient accuracy. The newly developed model for estimation of the shear strengths of ETS-GFRP-strengthened beams and the effective strains in ETS-GFRP bars agrees well with the test data.
    publisherASCE
    titleExperimental and Analytical Study on Shear Performance of Embedded Through-Section GFRP-Strengthened RC Beams
    typeJournal Article
    journal volume26
    journal issue5
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0001235
    journal fristpage04022046
    journal lastpage04022046-17
    page17
    treeJournal of Composites for Construction:;2022:;Volume ( 026 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian