YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Assessing the WRF-Solar Model Performance Using Satellite-Derived Irradiance from the National Solar Radiation Database

    Source: Journal of Applied Meteorology and Climatology:;2022:;volume( 061 ):;issue: 002
    DOI: 10.1175/JAMC-D-21-0090.1
    Abstract: WRF-Solar is a numerical weather prediction model specifically designed to meet the increasing demand for accurate solar irradiance forecasting. The model provides flexibility in the representation of the aerosol–cloud–radiation processes. This flexibility can be argued to make it more difficult to improve the model’s performance because of the necessity of inspecting different configurations. To alleviate this situation, WRF-Solar has a reference configuration to use as a benchmark in sensitivity experiments. However, the scarcity of high-quality ground observations is a handicap to accurately quantify the model performance. An alternative to ground observations are satellite irradiance retrievals. Herein we analyze the adequacy of the National Solar Radiation Database (NSRDB) to validate the WRF-Solar performance using high-quality global horizontal irradiance (GHI) observations across the contiguous United States (CONUS). Based on the sufficient performance of NSRDB, we further analyze the WRF-Solar forecast errors across the CONUS, the growth of the forecasting errors as a function of the lead time, and sensitivities to the grid spacing and the representation of the radiative effects of unresolved clouds. Our results based on WRF-Solar forecasts spanning 2018 reveal a 7% median degradation of the mean absolute error (MAE) from the first to the second daytime period. Reducing the grid spacing from 9 to 3 km leads to a 4% improvement in the MAE, whereas activating the radiative effects of unresolved clouds is desirable over most of the CONUS even at 3 km of grid spacing. A systematic overestimation of the GHI is found. These results illustrate the potential of GHI retrievals to contribute to increasing the WRF-Solar performance.
    • Download: (43.51Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Assessing the WRF-Solar Model Performance Using Satellite-Derived Irradiance from the National Solar Radiation Database

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4286073
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    date accessioned2022-05-09T01:00:25Z
    date available2022-05-09T01:00:25Z
    date copyright14 Feb 2022
    date issued2022
    identifier otherJAMC-D-21-0090.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4286073
    description abstractWRF-Solar is a numerical weather prediction model specifically designed to meet the increasing demand for accurate solar irradiance forecasting. The model provides flexibility in the representation of the aerosol–cloud–radiation processes. This flexibility can be argued to make it more difficult to improve the model’s performance because of the necessity of inspecting different configurations. To alleviate this situation, WRF-Solar has a reference configuration to use as a benchmark in sensitivity experiments. However, the scarcity of high-quality ground observations is a handicap to accurately quantify the model performance. An alternative to ground observations are satellite irradiance retrievals. Herein we analyze the adequacy of the National Solar Radiation Database (NSRDB) to validate the WRF-Solar performance using high-quality global horizontal irradiance (GHI) observations across the contiguous United States (CONUS). Based on the sufficient performance of NSRDB, we further analyze the WRF-Solar forecast errors across the CONUS, the growth of the forecasting errors as a function of the lead time, and sensitivities to the grid spacing and the representation of the radiative effects of unresolved clouds. Our results based on WRF-Solar forecasts spanning 2018 reveal a 7% median degradation of the mean absolute error (MAE) from the first to the second daytime period. Reducing the grid spacing from 9 to 3 km leads to a 4% improvement in the MAE, whereas activating the radiative effects of unresolved clouds is desirable over most of the CONUS even at 3 km of grid spacing. A systematic overestimation of the GHI is found. These results illustrate the potential of GHI retrievals to contribute to increasing the WRF-Solar performance.
    titleAssessing the WRF-Solar Model Performance Using Satellite-Derived Irradiance from the National Solar Radiation Database
    typeJournal Paper
    journal volume61
    journal issue2
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/JAMC-D-21-0090.1
    page129–142
    treeJournal of Applied Meteorology and Climatology:;2022:;volume( 061 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian