YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Design of a Four-Bar Latch Mechanism and a Shear-Based Rotary Viscous Damper for Single-Axis Prosthetic Knees

    Source: Journal of Mechanisms and Robotics:;2021:;volume( 014 ):;issue: 003::page 31011-1
    Author:
    Arelekatti, V. N. Murthy
    ,
    Petelina, Nina T.
    ,
    Johnson, W. Brett
    ,
    Major, Matthew J.
    ,
    Winter, V, Amos G.
    DOI: 10.1115/1.4052804
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: With over 30 million people worldwide requiring assistive devices, there is a great need for low-cost and high-performance prosthetic technologies that can enable kinematics close to able-bodied gait. Low-income users of prosthetic knees in the developing world repeatedly report the need for n inconspicuous gait to mitigate the severe socioeconomic discrimination associated with disability. However, passive prosthetic knees designed for these users have primarily focused on stability and affordability, often at the cost of the high biomechanical performance that is required to replicate able-bodied kinematics. In this study, we present the design and preliminary testing of two distinct mechanism modules that are novel for passive prosthetic knee applications: the stability module and the damping module. These mechanisms are designed to enable users of single-axis, passive prosthetic knees to walk with close to able-bodied kinematics on level-ground, specifically during the transition from the stance phase to the swing phase of the gait cycle. The stability module was implemented with a latch mounted on a virtual axis of a four-bar linkage, which can be engaged during early stance for stability and disengaged during late stance to initiate knee flexion. The damping module was implemented with a concentric stack of stationary and rotating pairs of plates that shear thin films of high-viscosity silicone oil. The goal of the resulting first-order damping torque was to achieve smooth flexion of the prosthetic knee within the able-bodied gait range (64 ± 6 deg). For preliminary user-centric validation, a prototype prosthetic knee with the stability module and two different dampers (with varying damping coefficients) was tested on a single subject with above-knee amputation in India. The stability module enabled smooth transition from stance to swing with timely initiation of knee flexion. The dampers also performed satisfactorily, as the increase in the damping coefficient was found to decrease the peak knee flexion angle during swing. The applications of the mechanisms presented in this article could significantly improve the kinematic performance of low-cost, passive prosthetic knees.
    • Download: (1.248Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Design of a Four-Bar Latch Mechanism and a Shear-Based Rotary Viscous Damper for Single-Axis Prosthetic Knees

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4285499
    Collections
    • Journal of Mechanisms and Robotics

    Show full item record

    contributor authorArelekatti, V. N. Murthy
    contributor authorPetelina, Nina T.
    contributor authorJohnson, W. Brett
    contributor authorMajor, Matthew J.
    contributor authorWinter, V, Amos G.
    date accessioned2022-05-08T09:43:23Z
    date available2022-05-08T09:43:23Z
    date copyright11/18/2021 12:00:00 AM
    date issued2021
    identifier issn1942-4302
    identifier otherjmr_14_3_031011.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4285499
    description abstractWith over 30 million people worldwide requiring assistive devices, there is a great need for low-cost and high-performance prosthetic technologies that can enable kinematics close to able-bodied gait. Low-income users of prosthetic knees in the developing world repeatedly report the need for n inconspicuous gait to mitigate the severe socioeconomic discrimination associated with disability. However, passive prosthetic knees designed for these users have primarily focused on stability and affordability, often at the cost of the high biomechanical performance that is required to replicate able-bodied kinematics. In this study, we present the design and preliminary testing of two distinct mechanism modules that are novel for passive prosthetic knee applications: the stability module and the damping module. These mechanisms are designed to enable users of single-axis, passive prosthetic knees to walk with close to able-bodied kinematics on level-ground, specifically during the transition from the stance phase to the swing phase of the gait cycle. The stability module was implemented with a latch mounted on a virtual axis of a four-bar linkage, which can be engaged during early stance for stability and disengaged during late stance to initiate knee flexion. The damping module was implemented with a concentric stack of stationary and rotating pairs of plates that shear thin films of high-viscosity silicone oil. The goal of the resulting first-order damping torque was to achieve smooth flexion of the prosthetic knee within the able-bodied gait range (64 ± 6 deg). For preliminary user-centric validation, a prototype prosthetic knee with the stability module and two different dampers (with varying damping coefficients) was tested on a single subject with above-knee amputation in India. The stability module enabled smooth transition from stance to swing with timely initiation of knee flexion. The dampers also performed satisfactorily, as the increase in the damping coefficient was found to decrease the peak knee flexion angle during swing. The applications of the mechanisms presented in this article could significantly improve the kinematic performance of low-cost, passive prosthetic knees.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDesign of a Four-Bar Latch Mechanism and a Shear-Based Rotary Viscous Damper for Single-Axis Prosthetic Knees
    typeJournal Paper
    journal volume14
    journal issue3
    journal titleJournal of Mechanisms and Robotics
    identifier doi10.1115/1.4052804
    journal fristpage31011-1
    journal lastpage31011-13
    page13
    treeJournal of Mechanisms and Robotics:;2021:;volume( 014 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian