YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Recognition of Distributed Combustion Regime From Deep Learning

    Source: Journal of Energy Resources Technology:;2022:;volume( 144 ):;issue: 009::page 92303-1
    Author:
    Roy, Rishi
    ,
    Gupta, Ashwani K.
    DOI: 10.1115/1.4053616
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Swirl-assisted distributed combustion was examined using a deep-learning framework. High intensity distributed combustion was fostered from a 5.72 MW/m3 atm thermal intensity swirl combustor (with methane fuel at equivalence ratio 0.9) by diluting the flowfield with carbon dioxide. Dilution of the flowfield caused reduction of global oxygen (%) content of the inlet mixture from 21% to 16% (in distributed combustion). The adiabatic flame temperature gradually reduced, resulting in decreased flame luminosity and increased flame thermal field uniformity. Gradual reduction of flame chemiluminescence was captured using high-speed imaging without any spectral filtering at different oxygen concentration (%) levels to gather the data input. Convolutional neural network (CNN) was developed from these images (with 85% of total data used for training and 15% for testing) for flames at O2 = 16%, 18%, 19%, and 21%. Hyperparameters were varied to optimize the model. New flame images at O2 = 20% and 17% were introduced to verify the image recognition capability of the trained model in terms of training image data. The results showed good promise of developed deep-learning-based convolutional neural network or machine learning neural network for efficient and effective recognition of the distributed combustion regime.
    • Download: (434.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Recognition of Distributed Combustion Regime From Deep Learning

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4285448
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorRoy, Rishi
    contributor authorGupta, Ashwani K.
    date accessioned2022-05-08T09:41:00Z
    date available2022-05-08T09:41:00Z
    date copyright2/16/2022 12:00:00 AM
    date issued2022
    identifier issn0195-0738
    identifier otherjert_144_9_092303.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4285448
    description abstractSwirl-assisted distributed combustion was examined using a deep-learning framework. High intensity distributed combustion was fostered from a 5.72 MW/m3 atm thermal intensity swirl combustor (with methane fuel at equivalence ratio 0.9) by diluting the flowfield with carbon dioxide. Dilution of the flowfield caused reduction of global oxygen (%) content of the inlet mixture from 21% to 16% (in distributed combustion). The adiabatic flame temperature gradually reduced, resulting in decreased flame luminosity and increased flame thermal field uniformity. Gradual reduction of flame chemiluminescence was captured using high-speed imaging without any spectral filtering at different oxygen concentration (%) levels to gather the data input. Convolutional neural network (CNN) was developed from these images (with 85% of total data used for training and 15% for testing) for flames at O2 = 16%, 18%, 19%, and 21%. Hyperparameters were varied to optimize the model. New flame images at O2 = 20% and 17% were introduced to verify the image recognition capability of the trained model in terms of training image data. The results showed good promise of developed deep-learning-based convolutional neural network or machine learning neural network for efficient and effective recognition of the distributed combustion regime.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleRecognition of Distributed Combustion Regime From Deep Learning
    typeJournal Paper
    journal volume144
    journal issue9
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4053616
    journal fristpage92303-1
    journal lastpage92303-5
    page5
    treeJournal of Energy Resources Technology:;2022:;volume( 144 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian