YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Measurement of Lean Blowoff Limits in Swirl-Stabilized Distributed Combustion With Varying Heat Release Intensities

    Source: Journal of Energy Resources Technology:;2021:;volume( 144 ):;issue: 008::page 82301-1
    Author:
    Roy, Rishi
    ,
    Gupta, Ashwani K.
    DOI: 10.1115/1.4052795
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Lean blowoff in distributed combustion was investigated at moderate heat release intensities of 5.72, 7.63, and 9.53 MW/m3-atm to characterize the blowoff phenomenon. Distributed combustion conditions were established from a conventional swirl flame at an equivalence ratio of 0.9 using carbon dioxide as the diluent to the inlet airstream. A gradual increase in the air flowrate provided a reduction of equivalence ratio that eventually resulted in the lean blowoff limit. Blowoff occurred at relatively higher equivalence ratios for higher heat release intensities, which was attributed to higher inlet turbulence leading to the early introduction of flame instabilities and blowoff. High-speed chemiluminescence imaging (at 500 frames/second) performed near blowoff moments demonstrated the transition of distributed reaction zone to a near V-shape zone due to quenching of flame surface along the sides. A closer examination of the reduction in equivalence ratio in small steps near the global blowoff showed the presence of a very thin thread-like rotating reaction zone. The observations of blowoff were further supported by the analysis of chemiluminescence signals in each case. The effect of inlet air preheats on blowoff was also investigated. Air preheats broadened the lean blowoff to a lower equivalence ratio which was attributed to enhanced flame speed, providing additional flame stability and reduction of flowfield instabilities. The laminar flame speeds obtained at each preheats case using Chemkin-Pro© simulation with GRI-Mech 3.0 reaction mechanisms supported such a hypothesis of gradually enhanced flame speed, providing additional flame stability.
    • Download: (772.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Measurement of Lean Blowoff Limits in Swirl-Stabilized Distributed Combustion With Varying Heat Release Intensities

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4285419
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorRoy, Rishi
    contributor authorGupta, Ashwani K.
    date accessioned2022-05-08T09:39:39Z
    date available2022-05-08T09:39:39Z
    date copyright11/12/2021 12:00:00 AM
    date issued2021
    identifier issn0195-0738
    identifier otherjert_144_8_082301.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4285419
    description abstractLean blowoff in distributed combustion was investigated at moderate heat release intensities of 5.72, 7.63, and 9.53 MW/m3-atm to characterize the blowoff phenomenon. Distributed combustion conditions were established from a conventional swirl flame at an equivalence ratio of 0.9 using carbon dioxide as the diluent to the inlet airstream. A gradual increase in the air flowrate provided a reduction of equivalence ratio that eventually resulted in the lean blowoff limit. Blowoff occurred at relatively higher equivalence ratios for higher heat release intensities, which was attributed to higher inlet turbulence leading to the early introduction of flame instabilities and blowoff. High-speed chemiluminescence imaging (at 500 frames/second) performed near blowoff moments demonstrated the transition of distributed reaction zone to a near V-shape zone due to quenching of flame surface along the sides. A closer examination of the reduction in equivalence ratio in small steps near the global blowoff showed the presence of a very thin thread-like rotating reaction zone. The observations of blowoff were further supported by the analysis of chemiluminescence signals in each case. The effect of inlet air preheats on blowoff was also investigated. Air preheats broadened the lean blowoff to a lower equivalence ratio which was attributed to enhanced flame speed, providing additional flame stability and reduction of flowfield instabilities. The laminar flame speeds obtained at each preheats case using Chemkin-Pro© simulation with GRI-Mech 3.0 reaction mechanisms supported such a hypothesis of gradually enhanced flame speed, providing additional flame stability.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMeasurement of Lean Blowoff Limits in Swirl-Stabilized Distributed Combustion With Varying Heat Release Intensities
    typeJournal Paper
    journal volume144
    journal issue8
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4052795
    journal fristpage82301-1
    journal lastpage82301-8
    page8
    treeJournal of Energy Resources Technology:;2021:;volume( 144 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian