YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Strategies for Improved Stability of Methanol-in-Diesel Emulsions

    Source: Journal of Energy Resources Technology:;2022:;volume( 144 ):;issue: 010::page 102306-1
    Author:
    Ghosh, Anupam
    ,
    Ravikrishna, R. V.
    DOI: 10.1115/1.4054019
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This study is motivated by the need to present a robust methodology for preparing stable methanol-in-diesel emulsions for use in compression ignition engines with the specific objective of maximizing the methanol content. Specifically, it involved exploring the feasibility of methanol-in-diesel emulsions with conventional surfactants such as Tween-80 and Span-80 and nonconventional surfactants such as 1-dodecanol, pentanol, and butanol. The hydrophilic–lipophilic balance (HLB) values of the surfactant varied from 7 to 15 to investigate the role of the surfactant HLB on the stability of the macroemulsion. It is observed that the macroemulsion with an HLB value of 10 provides the best stability results. Using surfactant HLB value of 10, three macroemulsions with 10 wt%, 15 wt%, and 20 wt% of methanol were prepared using ultrasonication. However, only the macroemulsion with 10 wt% of methanol was observed to be stable for at least 20 days after preparation. Next, the microemulsions of diesel–methanol were produced by using nonconventional surfactants such as 1-dodecanol, pentanol, and butanol. Among these, 1-dodecanol was found out as the most suitable surfactant owing to its ability to form microemulsions with any mixing ratio of diesel–methanol and its high cetane number (63.6). This study has clearly brought out the strategies for preparing both macro and microemulsions. Overall, the results presented in the current work are expected to aid efforts in adapting compression ignition engines for diesel–methanol fuel blends.
    • Download: (1.140Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Strategies for Improved Stability of Methanol-in-Diesel Emulsions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4285314
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorGhosh, Anupam
    contributor authorRavikrishna, R. V.
    date accessioned2022-05-08T09:34:57Z
    date available2022-05-08T09:34:57Z
    date copyright3/22/2022 12:00:00 AM
    date issued2022
    identifier issn0195-0738
    identifier otherjert_144_10_102306.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4285314
    description abstractThis study is motivated by the need to present a robust methodology for preparing stable methanol-in-diesel emulsions for use in compression ignition engines with the specific objective of maximizing the methanol content. Specifically, it involved exploring the feasibility of methanol-in-diesel emulsions with conventional surfactants such as Tween-80 and Span-80 and nonconventional surfactants such as 1-dodecanol, pentanol, and butanol. The hydrophilic–lipophilic balance (HLB) values of the surfactant varied from 7 to 15 to investigate the role of the surfactant HLB on the stability of the macroemulsion. It is observed that the macroemulsion with an HLB value of 10 provides the best stability results. Using surfactant HLB value of 10, three macroemulsions with 10 wt%, 15 wt%, and 20 wt% of methanol were prepared using ultrasonication. However, only the macroemulsion with 10 wt% of methanol was observed to be stable for at least 20 days after preparation. Next, the microemulsions of diesel–methanol were produced by using nonconventional surfactants such as 1-dodecanol, pentanol, and butanol. Among these, 1-dodecanol was found out as the most suitable surfactant owing to its ability to form microemulsions with any mixing ratio of diesel–methanol and its high cetane number (63.6). This study has clearly brought out the strategies for preparing both macro and microemulsions. Overall, the results presented in the current work are expected to aid efforts in adapting compression ignition engines for diesel–methanol fuel blends.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleStrategies for Improved Stability of Methanol-in-Diesel Emulsions
    typeJournal Paper
    journal volume144
    journal issue10
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4054019
    journal fristpage102306-1
    journal lastpage102306-11
    page11
    treeJournal of Energy Resources Technology:;2022:;volume( 144 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian