YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Investigation on the n-Heptane Spray Flame at Hydrous Ethanol Premixed Condition

    Source: Journal of Energy Resources Technology:;2022:;volume( 144 ):;issue: 010::page 102301-1
    Author:
    Wang, Ying
    ,
    Wang, Peng
    DOI: 10.1115/1.4053845
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In hydrous ethanol-diesel dual-fuel combustion modes, premixed hydrous ethanol would have an impact on the diesel combustion and soot production. In this work, based on computational fluid dynamics (CFD) model coupled with kinetic mechanism, the influence of premixed hydrous ethanol on combustion and soot formation of n-heptane spray flame in the combustion vessel was investigated, and the influence of different parameters of premixed atmosphere on the n-heptane spray combustion was also explored. The simulation results indicated that the premixed atmosphere could inhibit the n-heptane spray combustion. The ignition delay (ID) time and the flame lift off length (FLoL) gradually increased, and the soot generation decreased with a rise of water content and ethanol premixed equivalence ratio. In addition, compared with the chemical inhibitory effect of oxygenated ethanol molecule on the ID time of n-heptane, the impact of the decrease in charge temperature caused by the hydrous ethanol vaporization on the ID time was more obvious. It could also be found with the reduction in the ambient O2 concentration, the ID time and FLOL of n-heptane increased, and the soot generation significantly reduced. However, if the initial ambient temperature was high as 1000 K, the combustion of hydrous ethanol would enhance the charge temperature, which counteracted some combustion delay effect caused by the premixed atmosphere.
    • Download: (1.566Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Investigation on the n-Heptane Spray Flame at Hydrous Ethanol Premixed Condition

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4285310
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorWang, Ying
    contributor authorWang, Peng
    date accessioned2022-05-08T09:34:50Z
    date available2022-05-08T09:34:50Z
    date copyright3/2/2022 12:00:00 AM
    date issued2022
    identifier issn0195-0738
    identifier otherjert_144_10_102301.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4285310
    description abstractIn hydrous ethanol-diesel dual-fuel combustion modes, premixed hydrous ethanol would have an impact on the diesel combustion and soot production. In this work, based on computational fluid dynamics (CFD) model coupled with kinetic mechanism, the influence of premixed hydrous ethanol on combustion and soot formation of n-heptane spray flame in the combustion vessel was investigated, and the influence of different parameters of premixed atmosphere on the n-heptane spray combustion was also explored. The simulation results indicated that the premixed atmosphere could inhibit the n-heptane spray combustion. The ignition delay (ID) time and the flame lift off length (FLoL) gradually increased, and the soot generation decreased with a rise of water content and ethanol premixed equivalence ratio. In addition, compared with the chemical inhibitory effect of oxygenated ethanol molecule on the ID time of n-heptane, the impact of the decrease in charge temperature caused by the hydrous ethanol vaporization on the ID time was more obvious. It could also be found with the reduction in the ambient O2 concentration, the ID time and FLOL of n-heptane increased, and the soot generation significantly reduced. However, if the initial ambient temperature was high as 1000 K, the combustion of hydrous ethanol would enhance the charge temperature, which counteracted some combustion delay effect caused by the premixed atmosphere.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNumerical Investigation on the n-Heptane Spray Flame at Hydrous Ethanol Premixed Condition
    typeJournal Paper
    journal volume144
    journal issue10
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4053845
    journal fristpage102301-1
    journal lastpage102301-11
    page11
    treeJournal of Energy Resources Technology:;2022:;volume( 144 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian