YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Leakages Through Radial Cracks in Cement Sheaths: Effect of Geometry, Viscosity, and Aperture

    Source: Journal of Energy Resources Technology:;2021:;volume( 144 ):;issue: 001::page 13006-1
    Author:
    Skorpa, Ragnhild
    ,
    Vrålstad, Torbjørn
    DOI: 10.1115/1.4052610
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Annular cement sheath is considered to be one of the most important barrier elements in the well, both during production and after well abandonment. It is however well-known that mechanical damage to the cement sheath might result in leakage pathways, such as microannuli and radial cracks, and thus loss of zonal isolation. In this paper, we have studied the effect of geometry, aperture, and viscosity on the resulting pressure-driven flow through real radial cracks in cement sheaths using computational fluid dynamics (CFD) simulations. Real radial cracks were created by downscaled laboratory pressure cycling experiments and the resulting geometries were mapped by X-ray computed tomography (CT). This gave a unique 3D volume of the degraded cement sheaths which provides detailed information about the morphology, such as the irregular apertures and roughness, as well as locations of the radial cracks. In this study, we have used five experimentally created geometries, varying from barely connected to fully connected and almost uniform cracks. Additionally, theoretical uniform models with homogeneous aperture and a smooth surface were created for comparison. The simulations were performed by importing the experimentally created leak paths into a CFD simulation software, making it possible to determine the actual flowrate as a function of pressure drop. Methane gas, water, and oil were used as model fluids. The simulation results show that fluid flow through real cracks in cement sheath is complex with torturous paths, especially around bottlenecks and narrow sections. Additionally, the results show that flow of both methane gas- and water are not linear and hence does not follow Darcy's law. This illustrates that simple models are not able to fully describe fluid flow through such complex geometries.
    • Download: (1.104Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Leakages Through Radial Cracks in Cement Sheaths: Effect of Geometry, Viscosity, and Aperture

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4285295
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorSkorpa, Ragnhild
    contributor authorVrålstad, Torbjørn
    date accessioned2022-05-08T09:34:08Z
    date available2022-05-08T09:34:08Z
    date copyright10/18/2021 12:00:00 AM
    date issued2021
    identifier issn0195-0738
    identifier otherjert_144_1_013006.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4285295
    description abstractAnnular cement sheath is considered to be one of the most important barrier elements in the well, both during production and after well abandonment. It is however well-known that mechanical damage to the cement sheath might result in leakage pathways, such as microannuli and radial cracks, and thus loss of zonal isolation. In this paper, we have studied the effect of geometry, aperture, and viscosity on the resulting pressure-driven flow through real radial cracks in cement sheaths using computational fluid dynamics (CFD) simulations. Real radial cracks were created by downscaled laboratory pressure cycling experiments and the resulting geometries were mapped by X-ray computed tomography (CT). This gave a unique 3D volume of the degraded cement sheaths which provides detailed information about the morphology, such as the irregular apertures and roughness, as well as locations of the radial cracks. In this study, we have used five experimentally created geometries, varying from barely connected to fully connected and almost uniform cracks. Additionally, theoretical uniform models with homogeneous aperture and a smooth surface were created for comparison. The simulations were performed by importing the experimentally created leak paths into a CFD simulation software, making it possible to determine the actual flowrate as a function of pressure drop. Methane gas, water, and oil were used as model fluids. The simulation results show that fluid flow through real cracks in cement sheath is complex with torturous paths, especially around bottlenecks and narrow sections. Additionally, the results show that flow of both methane gas- and water are not linear and hence does not follow Darcy's law. This illustrates that simple models are not able to fully describe fluid flow through such complex geometries.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleLeakages Through Radial Cracks in Cement Sheaths: Effect of Geometry, Viscosity, and Aperture
    typeJournal Paper
    journal volume144
    journal issue1
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4052610
    journal fristpage13006-1
    journal lastpage13006-10
    page10
    treeJournal of Energy Resources Technology:;2021:;volume( 144 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian