YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Machine Learning Applications to Predict Surface Oil Rates for High Gas Oil Ratio Reservoirs

    Source: Journal of Energy Resources Technology:;2021:;volume( 144 ):;issue: 001::page 13003-1
    Author:
    Ibrahim, Ahmed Farid
    ,
    Al-Dhaif, Redha
    ,
    Elkatatny, Salaheldin
    ,
    Al Shehri, Dhafer
    DOI: 10.1115/1.4052485
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Well-performance investigation highly depends on the accurate estimation of its oil and gas flowrates. Testing separators and multiphase flowmeters (MPFMs) are associated with many technical and operational issues. Therefore, this study aims to implement the support vector machine (SVM), and random forests (RF) as machine learning (ML) methods to estimate the well production rate based on chokes parameters for high GOR reservoirs. Dataset of 1131 data points includes GOR, upstream and downstream pressures (PU and PD), choke size (D64), and actual data of oil and gas production rates. The data have GOR was up to 9265 SCF/STB, the oil rate varied from 1156 and 7982 BPD. SVM and RF models were built to estimate the production rates. The ML models were trained using seventy percent of the dataset, while the models were tested and validated using 30% of the dataset. The dataset was classified to 622 wells that were flowing at critical flow compared with 509 wells that were flowing at subcritical conditions based on a PD/PU ratio of 0.55. Four machine learning models were developed using SVM and RF for subcritical flow and critical flow conditions. Different performance indicators were applied to assess the developed models. SVM and RF models revealed average absolute percentage error (AAPE) of 1.3 and 0.7%, respectively, in the case of subcritical flow conditions. For critical flow conditions, the AAPE was found to be 1.7% in the SVM model, and 0.8% in the RF model. The developed models showed a coefficient of determination (R2) higher than 0.93. All developed ML models perform better than empirical correlations. These results confirm the capabilities to predict the oil rates from the choke parameters in real-time without the requirement of instrument installation of wellsite intervention.
    • Download: (1.144Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Machine Learning Applications to Predict Surface Oil Rates for High Gas Oil Ratio Reservoirs

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4285292
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorIbrahim, Ahmed Farid
    contributor authorAl-Dhaif, Redha
    contributor authorElkatatny, Salaheldin
    contributor authorAl Shehri, Dhafer
    date accessioned2022-05-08T09:34:02Z
    date available2022-05-08T09:34:02Z
    date copyright10/5/2021 12:00:00 AM
    date issued2021
    identifier issn0195-0738
    identifier otherjert_144_1_013003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4285292
    description abstractWell-performance investigation highly depends on the accurate estimation of its oil and gas flowrates. Testing separators and multiphase flowmeters (MPFMs) are associated with many technical and operational issues. Therefore, this study aims to implement the support vector machine (SVM), and random forests (RF) as machine learning (ML) methods to estimate the well production rate based on chokes parameters for high GOR reservoirs. Dataset of 1131 data points includes GOR, upstream and downstream pressures (PU and PD), choke size (D64), and actual data of oil and gas production rates. The data have GOR was up to 9265 SCF/STB, the oil rate varied from 1156 and 7982 BPD. SVM and RF models were built to estimate the production rates. The ML models were trained using seventy percent of the dataset, while the models were tested and validated using 30% of the dataset. The dataset was classified to 622 wells that were flowing at critical flow compared with 509 wells that were flowing at subcritical conditions based on a PD/PU ratio of 0.55. Four machine learning models were developed using SVM and RF for subcritical flow and critical flow conditions. Different performance indicators were applied to assess the developed models. SVM and RF models revealed average absolute percentage error (AAPE) of 1.3 and 0.7%, respectively, in the case of subcritical flow conditions. For critical flow conditions, the AAPE was found to be 1.7% in the SVM model, and 0.8% in the RF model. The developed models showed a coefficient of determination (R2) higher than 0.93. All developed ML models perform better than empirical correlations. These results confirm the capabilities to predict the oil rates from the choke parameters in real-time without the requirement of instrument installation of wellsite intervention.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMachine Learning Applications to Predict Surface Oil Rates for High Gas Oil Ratio Reservoirs
    typeJournal Paper
    journal volume144
    journal issue1
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4052485
    journal fristpage13003-1
    journal lastpage13003-9
    page9
    treeJournal of Energy Resources Technology:;2021:;volume( 144 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian