Surface Coating Modification of Cathode Material for Long-Term Stable All-Solid-State BatteriesSource: Journal of Electrochemical Energy Conversion and Storage:;2022:;volume( 019 ):;issue: 003::page 30908-1DOI: 10.1115/1.4053667Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: The decomposition of solid electrolytes at the surface of the cathode has become one of the critical bottlenecks in the further widespread of all-solid-state batteries. To this end, we applied a fluidized bed coating method on the cathode and obtained the LiAlO2-coated NCM622 (LiAlO2@NCM622) and Al2O3-coated NCM622 (Al2O3@NCM622). The morphologies, structures, and electrochemical properties of NCM622, LiAlO2@NCM622, and Al2O3@NCM622 were characterized by SEM, EDS, ICP-AES, XRD, laser particle size analyzer, and electrochemical tests. For LiAlO2@NCM622 and Al2O3@NCM622, the coating layers are uniformly distributed on the surface of the cathode active material while the intrinsic structures of NCM622 remain unchanged after coating. Besides, the particle sizes of LiAlO2@NCM622 and Al2O3@NCM622 are larger than NCM622. Furthermore, solid-state batteries were assembled with NCM622, LiAlO2@NCM622, and Al2O3@NCM622 as cathodes, respectively, polyoxyethylene as the solid electrolyte and lithium metal as the anode. The electrochemical tests show that the assembled batteries with LiAlO2@NCM622 and Al2O3@NCM622 exhibit better cycle performance than pristine NCM622. The capacity retention decreases to 80% at the 28th cycle for NCM622, 64th cycle for LiAlO2@NCM622, and 55th cycle for Al2O3@NCM622, respectively, demonstrating that the compatibility between the surface-coated cathode and the solid electrolyte has been significantly improved. This work promotes the application of surface modification technology and paves the way toward next-generation solid-state batteries.
|
Show full item record
contributor author | Li, Suli | |
contributor author | Tang, Weichao | |
contributor author | Zhao, Wei | |
contributor author | Li, Junyi | |
date accessioned | 2022-05-08T09:33:03Z | |
date available | 2022-05-08T09:33:03Z | |
date copyright | 3/7/2022 12:00:00 AM | |
date issued | 2022 | |
identifier issn | 2381-6872 | |
identifier other | jeecs_19_3_030908.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4285272 | |
description abstract | The decomposition of solid electrolytes at the surface of the cathode has become one of the critical bottlenecks in the further widespread of all-solid-state batteries. To this end, we applied a fluidized bed coating method on the cathode and obtained the LiAlO2-coated NCM622 (LiAlO2@NCM622) and Al2O3-coated NCM622 (Al2O3@NCM622). The morphologies, structures, and electrochemical properties of NCM622, LiAlO2@NCM622, and Al2O3@NCM622 were characterized by SEM, EDS, ICP-AES, XRD, laser particle size analyzer, and electrochemical tests. For LiAlO2@NCM622 and Al2O3@NCM622, the coating layers are uniformly distributed on the surface of the cathode active material while the intrinsic structures of NCM622 remain unchanged after coating. Besides, the particle sizes of LiAlO2@NCM622 and Al2O3@NCM622 are larger than NCM622. Furthermore, solid-state batteries were assembled with NCM622, LiAlO2@NCM622, and Al2O3@NCM622 as cathodes, respectively, polyoxyethylene as the solid electrolyte and lithium metal as the anode. The electrochemical tests show that the assembled batteries with LiAlO2@NCM622 and Al2O3@NCM622 exhibit better cycle performance than pristine NCM622. The capacity retention decreases to 80% at the 28th cycle for NCM622, 64th cycle for LiAlO2@NCM622, and 55th cycle for Al2O3@NCM622, respectively, demonstrating that the compatibility between the surface-coated cathode and the solid electrolyte has been significantly improved. This work promotes the application of surface modification technology and paves the way toward next-generation solid-state batteries. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Surface Coating Modification of Cathode Material for Long-Term Stable All-Solid-State Batteries | |
type | Journal Paper | |
journal volume | 19 | |
journal issue | 3 | |
journal title | Journal of Electrochemical Energy Conversion and Storage | |
identifier doi | 10.1115/1.4053667 | |
journal fristpage | 30908-1 | |
journal lastpage | 30908-9 | |
page | 9 | |
tree | Journal of Electrochemical Energy Conversion and Storage:;2022:;volume( 019 ):;issue: 003 | |
contenttype | Fulltext |