contributor author | Wang, Ru | |
contributor author | Tsai, Jheng-Han | |
contributor author | Snead, Martin P. | |
contributor author | Alexander, Philip | |
contributor author | Wilson, D. Ian | |
date accessioned | 2022-05-08T09:29:21Z | |
date available | 2022-05-08T09:29:21Z | |
date copyright | 12/20/2021 12:00:00 AM | |
date issued | 2021 | |
identifier issn | 0148-0731 | |
identifier other | bio_144_05_051004.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4285196 | |
description abstract | The interface between silicone oil and saline layers in a three-dimensional model of the eye chamber was studied under different eye-like saccadic motions in order to determine the stability of the interface and propensity for emulsification in the bulk. The effect of level of fill, saccade amplitude, angular velocity, latency time, and orientation were investigated experimentally in spherical flasks with internal diameters 10, 28, and 40 mm, as well as a 28 mm diameter flask with an indent replicating the lens or the presence of a buckle. The deformation of the interface was quantified in terms of the change in its length in two-dimensional images. The deformation increased with Weber number, We, and was roughly proportional to We for We > | |
description abstract | 1. The presence of the lens gave rise to higher deformation near this feature. In all cases emulsification was not observed in either bulk fluid. The velocity profile in the spherical configuration was mapped using particle imaging velocimetry and is compared with an analytical solution and a short computational fluid dynamics simulation study. These confirm that the saccadic motion induces flow near the wall in the saline layer and significantly further into the chamber in the silicone oil. Surfactants soluble in the aqueous and oil phases reduced the interfacial tension, increasing deformation but did not lead to emulsification in the bulk. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Stability of the Interface Between Two Immiscible Liquids in a Model Eye Subject to Saccadic Motion | |
type | Journal Paper | |
journal volume | 144 | |
journal issue | 5 | |
journal title | Journal of Biomechanical Engineering | |
identifier doi | 10.1115/1.4053004 | |
journal fristpage | 51004-1 | |
journal lastpage | 51004-13 | |
page | 13 | |
tree | Journal of Biomechanical Engineering:;2021:;volume( 144 ):;issue: 005 | |
contenttype | Fulltext | |