YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Parameterizing the Effects of Tumor Shape in Magnetic Nanoparticle Thermotherapy Through a Computational Approach

    Source: Journal of Heat Transfer:;2022:;volume( 144 ):;issue: 003::page 31201-1
    Author:
    Singh, Amritpal
    ,
    Kumar, Neeraj
    DOI: 10.1115/1.4052967
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this work, effects of tumor shape on magnetic nanoparticle hyperthermia (MNPH) are investigated and evaluated using four categories (spherical, oblate, prolate, and egg-shape) of tumor models having different morphologies. These tumors have equal volume
     
    however, due to the differences in their shapes, they have different surface areas. The shape of tumors is quantified in terms of shape factor (ζ). Simulations for MNPH are done on the physical model constituting tumor tissue enclosed within the healthy tissue. Magnetic hyperthermia is applied (frequency 150 kHz, and magnetic field amplitude 20.5 kA/m) to all tumor models, for 1 h, after injection of magnetic nanoparticles (MNPs) at the respective tumor centroids. The distribution of MNPs after injection is considered Gaussian. The governing model (Pennes' bioheat model) of heat transfer in biological media is solved with the finite volume-immersed boundary (FV-IB) method to simulate MNPH. Therapeutic effects are calculated using the Arrhenius tissue damage model, cumulative equivalent minutes at 43 °C (CEM 43), and heterogeneity in temperature profiles of the tumors. Results show that the therapeutic effects of MNPH depend significantly on the shape of a tumor. Tumors with higher shape factors receive less therapeutic effects in comparison to the tumors having lower shape factors. An empirical thermal damage model is also developed to assess the MNPH efficacy in real complex-shaped tumors.
     
    • Download: (1.868Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Parameterizing the Effects of Tumor Shape in Magnetic Nanoparticle Thermotherapy Through a Computational Approach

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4285072
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorSingh, Amritpal
    contributor authorKumar, Neeraj
    date accessioned2022-05-08T09:23:19Z
    date available2022-05-08T09:23:19Z
    date copyright1/18/2022 12:00:00 AM
    date issued2022
    identifier issn0022-1481
    identifier otherht_144_03_031201.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4285072
    description abstractIn this work, effects of tumor shape on magnetic nanoparticle hyperthermia (MNPH) are investigated and evaluated using four categories (spherical, oblate, prolate, and egg-shape) of tumor models having different morphologies. These tumors have equal volume
    description abstracthowever, due to the differences in their shapes, they have different surface areas. The shape of tumors is quantified in terms of shape factor (ζ). Simulations for MNPH are done on the physical model constituting tumor tissue enclosed within the healthy tissue. Magnetic hyperthermia is applied (frequency 150 kHz, and magnetic field amplitude 20.5 kA/m) to all tumor models, for 1 h, after injection of magnetic nanoparticles (MNPs) at the respective tumor centroids. The distribution of MNPs after injection is considered Gaussian. The governing model (Pennes' bioheat model) of heat transfer in biological media is solved with the finite volume-immersed boundary (FV-IB) method to simulate MNPH. Therapeutic effects are calculated using the Arrhenius tissue damage model, cumulative equivalent minutes at 43 °C (CEM 43), and heterogeneity in temperature profiles of the tumors. Results show that the therapeutic effects of MNPH depend significantly on the shape of a tumor. Tumors with higher shape factors receive less therapeutic effects in comparison to the tumors having lower shape factors. An empirical thermal damage model is also developed to assess the MNPH efficacy in real complex-shaped tumors.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleParameterizing the Effects of Tumor Shape in Magnetic Nanoparticle Thermotherapy Through a Computational Approach
    typeJournal Paper
    journal volume144
    journal issue3
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4052967
    journal fristpage31201-1
    journal lastpage31201-12
    page12
    treeJournal of Heat Transfer:;2022:;volume( 144 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian