YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Effect of Weber Number on Spray and Vaporization Characteristics of Liquid Jets Injected in Air Crossflow

    Source: Journal of Fluids Engineering:;2022:;volume( 144 ):;issue: 006::page 61108-1
    Author:
    Kamin, Manu
    ,
    Khare, Prashant
    DOI: 10.1115/1.4053552
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper details a numerical investigation conducted to systematically evaluate the effects of aerodynamic Weber number, in the range from 68 to 136, on spray characteristics and gaseous fluid dynamics when liquid jets are injected in high-temperature air crossflow. The momentum flux ratio and air temperature for all the cases studied in this research effort are 9 and 573 K, respectively. The computations are conducted using an Eulerian–Lagrangian framework, where the gas phase is modeled by the compressible form of the Navier–Stokes equations and the liquid phase is treated in the Lagrangian frame with appropriate models to account for jet injection and breakup phenomena. A modified version of two-way coupling, which takes into account the finite size of the dispersed phase, is used to account for the exchange of mass, momentum, energy and species between the two phases. Turbulence closure is achieved using the large eddy simulation technique. As a first step, the framework is validated against measurements for non-vaporizing and vaporizing conditions—our results agree well with experimental data. Next, three computations in the range of Weber numbers mentioned above are conducted—the effect of Weber number is quantified in terms of the spatiotemporal evolution of the mass fraction of the vaporized liquid, detailed distributions of droplet sizes, their velocities, and volumetric fluxes. It is found that with an increase in the Weber number, the droplet sizes and the penetration depth monotonically decreased. As a result, at higher Weber number conditions, the vaporized liquid in the domain increases due to the overall enhancement in the effective surface area of the liquid phase.
    • Download: (5.521Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Effect of Weber Number on Spray and Vaporization Characteristics of Liquid Jets Injected in Air Crossflow

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4284831
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorKamin, Manu
    contributor authorKhare, Prashant
    date accessioned2022-05-08T09:11:17Z
    date available2022-05-08T09:11:17Z
    date copyright2/23/2022 12:00:00 AM
    date issued2022
    identifier issn0098-2202
    identifier otherfe_144_06_061108.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4284831
    description abstractThis paper details a numerical investigation conducted to systematically evaluate the effects of aerodynamic Weber number, in the range from 68 to 136, on spray characteristics and gaseous fluid dynamics when liquid jets are injected in high-temperature air crossflow. The momentum flux ratio and air temperature for all the cases studied in this research effort are 9 and 573 K, respectively. The computations are conducted using an Eulerian–Lagrangian framework, where the gas phase is modeled by the compressible form of the Navier–Stokes equations and the liquid phase is treated in the Lagrangian frame with appropriate models to account for jet injection and breakup phenomena. A modified version of two-way coupling, which takes into account the finite size of the dispersed phase, is used to account for the exchange of mass, momentum, energy and species between the two phases. Turbulence closure is achieved using the large eddy simulation technique. As a first step, the framework is validated against measurements for non-vaporizing and vaporizing conditions—our results agree well with experimental data. Next, three computations in the range of Weber numbers mentioned above are conducted—the effect of Weber number is quantified in terms of the spatiotemporal evolution of the mass fraction of the vaporized liquid, detailed distributions of droplet sizes, their velocities, and volumetric fluxes. It is found that with an increase in the Weber number, the droplet sizes and the penetration depth monotonically decreased. As a result, at higher Weber number conditions, the vaporized liquid in the domain increases due to the overall enhancement in the effective surface area of the liquid phase.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Effect of Weber Number on Spray and Vaporization Characteristics of Liquid Jets Injected in Air Crossflow
    typeJournal Paper
    journal volume144
    journal issue6
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.4053552
    journal fristpage61108-1
    journal lastpage61108-13
    page13
    treeJournal of Fluids Engineering:;2022:;volume( 144 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian